zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.


Sreenivasulu, N.; Radchuk, V.; Alawady, A.; Borisjuk, L.; Weier, D.; Staroske, N.; Fuchs, J.; Miersch, O.; Strickert, M.; Usadel, B.; Wobus, U.; Grimm, B.; Weber, H.; Weschke, W.; De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8 Plant J. 64, 589-603, (2010) DOI: 10.1111/j.1365-313X.2010.04350.x

Grain development of the maternal effect shrunken endosperm mutant seg8 was analysed by comprehensive molecular, biochemical and histological methods. The most obvious finding was de‐regulation of ABA levels, which were lower compared to wild‐type during the pre‐storage phase but higher during the transition from cell division/differentiation to accumulation of storage products. Ploidy levels and ABA amounts were inversely correlated in the developing endosperms of both mutant and wild‐type, suggesting an influence of ABA on cell‐cycle regulation. The low ABA levels found in seg8 grains between anthesis and beginning endosperm cellularization may result from a gene dosage effect in the syncytial endosperm that causes impaired transfer of ABA synthesized in vegetative tissues into filial grain parts. Increased ABA levels during the transition phase are accompanied by higher chlorophyll and carotenoid/xanthophyll contents. The data suggest a disturbed ABA‐releasing biosynthetic pathway. This is indicated by up‐regulation of expression of the geranylgeranyl reductase (GGR) gene, which may be induced by ABA deficiency during the pre‐storage phase. Abnormal cellularization/differentiation of the developing seg8 endosperm and reduced accumulation of starch are phenotypic characteristics that reflect these disturbances. The present study did not reveal the primary gene defect causing the seg8 phenotype, but presents new insights into the maternal/filial relationships regulating barley endosperm development.

Renovell, ?.; Gago, S.; Ruiz-Ruiz, S.; Velázquez, K.; Navarro, L.; Moreno, P.; Vives, M. C.; Guerri, J.; Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation Virology 406, 360-369, (2010) DOI: 10.1016/j.virol.2010.07.034

Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides −67 and + 50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the + 1 guanylate and the + 2 adenylate are important for CP-sgRNA synthesis.

Feussner, K.; Guranowski, A.; Kostka, S.; Wasternack, C.; Diadenosine 5′,5‴- P1,P4-tetraphosphate (Ap4A) Hydrolase from Tomato (Lycopersicon esculentum cv. Lukullus) -Purification, Biochemical Properties and Behaviour during Stress Z. Naturforsch. C 51, 477-486, (1996) DOI: 10.1515/znc-1996-7-805

Dinucleoside 5′,5‴-P1,P4-tetraphosphate hydrolase (EC has been purified to homogeneity from tomato (Lycopersicon esculentum) cells grown in suspension. The purification procedure comprised ammonium sulphate fractionation following five standard chroma­ tography steps and a final chromatography on Ap4A-Sepharose.
IPB Mainnav Search