zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Pedranzani, H.; Sierra-de-Grado, R.; Vigliocco, A.; Miersch, O.; Abdala, G.; Cold and water stresses produce changes in endogenous jasmonates in two populations of Pinus pinaster Ait Plant Growth Regul. 52, 111-116, (2007) DOI: 10.1007/s10725-007-9166-2

There is considerable evidence suggesting that jasmonates (JAs) play a role in plant resistance against abiotic stress. It is well known that in Angiosperms JAs are involved in the defense response, however there is little information about their role in Gymnosperms. Our proposal was to study the involvement of JAs in Pinus pinaster Ait. reaction to cold and water stress, and to compare the response of two populations of different provenances (Gredos and Bajo Tiétar) to these stresses. We detected 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and the hydroxylates 11-hydroxyjasmonate and 12-hydroxyjasmonate in foliage and shoots of P. pinaster plants. The response of the Gredos population to cold stress differed from that of Bajo Tiétar. Gredos plants showed a lower JA-basal level than Bajo Tiétar; under cold stress JA increased twofold at 72 h, while it decreased in Bajo Tiétar plants. The hydroxylates slightly increased in both populations due to cold stress treatment. Under water stress, plants from Gredos showed a remarkable JA-increase; thus the JA-response was much more prominent under water stress than under cold stress. In contrast, no change was found in JA-level in Bajo Tiétar plants under water stress. The level of JA-precursor, OPDA, was very low in control plants from Gredos and Bajo Tiétar. Under water stress OPDA increased only in plants from Bajo Tiétar. Therefore, we inform here of a different JAs-accumulation pattern after the stress treatment in P. pinaster from two provenances, and suggest a possible correlation with adaptations to diverse ecological conditions.
Publikation

Abdala, G.; Miersch, O.; Kramell, R.; Vigliocco, A.; Agostini, E.; Forchetti, G.; Alemano, S.; Jasmonate and octadecanoid occurrence in tomato hairy roots. Endogenous level changes in response to NaCl Plant Growth Regul. 40, 21-27, (2003) DOI: 10.1023/A:1023016412454

Jasmonic acid biosynthesis occurs in leaves and there is also evidence of a similar pathway in roots. The expression of lipoxygenase, allene oxide cyclase and low amounts of transcripts of allene oxide synthase in tomato roots indicates that some steps of the jasmonate synthesis may occur in these organs. Thus, the aim of the present work was to study the jasmonate and octadecanoid occurrence in tomato roots using isolated cultures of hairy roots. These were obtained by the transformation of cv. Pera roots with Agrobacterium rhyzogenes. Also we investigated the effect of NaCl stress on the endogenous levels of these compounds. Jasmonic acid, 12-oxophytodienoic acid and their methylated derivatives, as well as a jasmonate-isoleucine conjugate, were present in control hairy roots of 30 d of culture. The 12-oxophytodienoic acid and its methylated derivative showed higher levels than jasmonic acid and its methylated form, although the content of the conjugate was the same as that of jasmonic acid. After salinization of hairy roots for 14, 20 and 30 d, free jasmonates and octadecanoids were measured. Fourteen days after salt treatment, increased levels of these compounds were found, jasmonic acid and 12-oxophytodienoic acid showed the most remarkable rise. 11-OH-jasmonic acid was found at 14 d of culture in control and salt-treated hairy roots; whereas the 12-OH- form of jasmonic acid was only detected in the salt-treated hairy roots. Agrobacterium rhizogenes cultures did not produce jasmonates and/or octadecanoids.
IPB Mainnav Search