zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 10.

Bücher und Buchkapitel

Klemm, S.; Buhl, J.; Möller, B.; Bürstenbinder, K.; Quantitative analysis of microtubule organization in leaf epidermis pavement cells (Hussey, P.J., Wang, P.). The Plant Cytoskeleton 2604, 43-61, (2023) ISBN: 978-1-0716-2866-9 DOI: 10.1007/978-1-0716-2867-6_4

Leaf epidermis pavement cells form highly complex shapes with interlocking lobes and necks at their anticlinal walls. The microtubule cytoskeleton plays essential roles in pavement cell morphogenesis, in particular at necks. Vice versa, shape generates stress patterns that regulate microtubule organization. Genetic or pharmacological perturbations that affect pavement cell shape often affect microtubule organization. Pavement cell shape and microtubule organization are therefore closely interconnected. Here, we present commonly used approaches for the quantitative analysis of pavement cell shape characteristics and of microtubule organization. In combination with ablation experiments, these methods can be applied to investigate how different genotypes (or treatments) affect the organization and stress responsiveness of the microtubule cytoskeleton.
Preprints

Yang, B.; Stamm, G.; Bürstenbinder, K.; Voiniciuc, C.; Microtubule-associated IQD9 guides cellulose synthase velocity to shape seed mucilage bioRxiv (2021) DOI: 10.1101/2021.12.11.472226

SummaryArabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes is guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis (SCE).Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles for cell wall polysaccharide biosynthesis and cortical microtubule (MT) organization.Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. Double mutant analyses revealed that their closest paralogs (IQD10 and KLCR2, respectively) are not required for mucilage biosynthesis. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. Similar to the previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein, IQD9 is required to maintain the velocity of cellulose synthases.Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in guiding the distribution of cell wall polysaccharides. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.
Preprints

Stephani, M.; Picchianti, L.; Gajic, A.; Beveridge, R.; Skarwan, E.; Sanchez de Medina Hernandez, V.; Mohseni, A.; Clavel, M.; Zeng, Y.; Naumann, C.; Matuszkiewicz, M.; Turco, E.; Loefke, C.; Li, B.; Durnberger, G.; Schutzbier, M.; Chen, H. T.; Abdrakhmanov, A.; Savova, A.; Chia, K.-S.; Djamei, A.; Schaffner, I.; Abel, S.; Jiang, L.; Mechtler, K.; Ikeda, F.; Martens, S.; Clausen, T.; Dagdas, Y.; A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress bioRxiv (2020) DOI: 10.1101/2020.03.18.995316

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the ER. Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control at the ER.
Preprints

Zang, J.; Klemm, S.; Pain, C.; Duckney, P.; Bao, Z.; Stamm, G.; Kriechbaumer, V.; Bürstenbinder, K.; Hussey, P. J.; Wang, P.; A Novel Plant Actin-Microtubule Bridging Complex Regulates Cytoskeletal and ER Structure at Endoplasmic Reticulum-Plasma Membrane Contact Sites (EPCS) SSRN Electronic Journal (2020) DOI: 10.2139/ssrn.3581370

In plants, the cortical ER network is connected to the plasma membrane through the ER-PM contact sites (EPCS), whose structures are maintained by EPCS resident proteins and the cytoskeleton. Strong co-alignment between EPCS and the cytoskeleton is observed in plants, but little is known of how the cytoskeleton is maintained and regulated at the EPCS. Here we have used a yeast-two-hybrid screen and subsequent in vivo interaction studies in plants by FRET-FLIM analysis, to identify two microtubule binding proteins, KLCR1 (Kinesin Light Chain Related protein 1) and IQD2 (IQ67-Domain 2) that interact with the actin binding protein NET3C and form a component of plant EPCS, that mediates the link between the actin and microtubule networks. The NET3C-KLCR1-IQD2 module, acting as an actin-microtubule bridging complex, has a direct influence on ER morphology. Their loss of function mutants, net3a/NET3C RNAi, 0klcr1 or iqd2, exhibit defects in pavement cell morphology which we suggest is linked to the disorganization of both actin filaments and microtubules. In conclusion, our results reveal a novel cytoskeletal associated complex, which is essential for the maintenance and organization of both cytoskeletal structure and ER morphology at the EPCS, and for normal plant cell morphogenesis.
Bücher und Buchkapitel

Poeschl, Y.; Möller, B.; Müller, L.; Bürstenbinder, K.; User-friendly assessment of pavement cell shape features with PaCeQuant: Novel functions and tools (Charles T. Anderson, Elizabeth S. Haswell, Ram Dixit). Methods Cell Biol. 160, 349-363, (2020) DOI: 10.1016/bs.mcb.2020.04.010

Leaf epidermis pavement cells develop complex jigsaw puzzle-like shapes in many plant species, including the model plant Arabidopsis thaliana. Due to their complex morphology, pavement cells have become a popular model system to study shape formation and coordination of growth in the context of mechanically coupled cells at the tissue level. To facilitate robust assessment and analysis of pavement cell shape characteristics in a high-throughput fashion, we have developed PaCeQuant and a collection of supplemental tools. The ImageJ-based MiToBo plugin PaCeQuant supports fully automatic segmentation of cell contours from microscopy images and the extraction of 28 shape features for each detected cell. These features now also include the Largest Empty Circle criterion as a proxy for mechanical stress. In addition, PaCeQuant provides a set of eight features for individual lobes, including the categorization as type I and type II lobes at two- and three-cell junctions, respectively. The segmentation and feature extraction results of PaCeQuant depend on the quality of input images. To allow for corrections in case of local segmentation errors, the LabelImageEditor is provided for user-friendly manual postprocessing of segmentation results. For statistical analysis and visualization, PaCeQuant is supplemented with the R package PaCeQuantAna, which provides statistical analysis functions and supports the generation of publication-ready plots in ready-to-use R workflows. In addition, we recently released the FeatureColorMapper tool which overlays feature values over cell regions for user-friendly visual exploration of selected features in a set of analyzed cells.
Bücher und Buchkapitel

Möller, B.; Bürstenbinder, K.; Semi-Automatic Cell Segmentation from Noisy Image Data for Quantification of Microtubule Organization on Single Cell Level 199-203, (2019) ISBN: 978-1-5386-3641-1 DOI: 10.1109/ISBI.2019.8759145

The structure of the microtubule cytoskeleton provides valuable information related to morphogenesis of cells. The cytoskeleton organizes into diverse patterns that vary in cells of different types and tissues, but also within a single tissue. To assess differences in cytoskeleton organization methods are needed that quantify cytoskeleton patterns within a complete cell and which are suitable for large data sets. A major bottleneck in most approaches, however, is a lack of techniques for automatic extraction of cell contours. Here, we present a semi-automatic pipeline for cell segmentation and quantification of microtubule organization. Automatic methods are applied to extract major parts of the contours and a handy image editor is provided to manually add missing information efficiently. Experimental results prove that our approach yields high-quality contour data with minimal user intervention and serves a suitable basis for subsequent quantitative studies.
Bücher und Buchkapitel

Möller, B.; Zergiebel, L.; Bürstenbinder, K.; Quantitative and Comparative Analysis of Global Patterns of (Microtubule) Cytoskeleton Organization with CytoskeletonAnalyzer2D (Cvrčková, F. & Žárský, V., eds.). Methods Mol. Biol. 1992, 151-171, (2019) ISBN: 978-1-4939-9469-4 DOI: 10.1007/978-1-4939-9469-4_10

The microtubule cytoskeleton plays important roles in cell morphogenesis. To investigate the mechanisms of cytoskeletal organization, for example, during growth or development, in genetic studies, or in response to environmental stimuli, image analysis tools for quantitative assessment are needed. Here, we present a method for texture measure-based quantification and comparative analysis of global microtubule cytoskeleton patterns and subsequent visualization of output data. In contrast to other approaches that focus on the extraction of individual cytoskeletal fibers and analysis of their orientation relative to the growth axis, CytoskeletonAnalyzer2D quantifies cytoskeletal organization based on the analysis of local binary patterns. CytoskeletonAnalyzer2D thus is particularly well suited to study cytoskeletal organization in cells where individual fibers are difficult to extract or which lack a clearly defined growth axis, such as leaf epidermal pavement cells. The tool is available as ImageJ plugin and can be combined with publicly available software and tools, such as R and Cytoscape, to visualize similarity networks of cytoskeletal patterns.
Bücher und Buchkapitel

Möller, B.; Poeschl, Y.; Klemm, S.; Bürstenbinder, K.; Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant (Cvrčková, F. & Žárský, V., eds.). Methods Mol. Biol. 1992, 329-349, (2019) ISBN: 978-1-4939-9469-4 DOI: 10.1007/978-1-4939-9469-4_22

Morphological analysis of cell shapes requires segmentation of cell contours from input images and subsequent extraction of meaningful shape descriptors that provide the basis for qualitative and quantitative assessment of shape characteristics. Here, we describe the publicly available ImageJ plugin PaCeQuant and its associated R package PaCeQuantAna, which provides a pipeline for fully automatic segmentation, feature extraction, statistical analysis, and graphical visualization of cell shape properties. PaCeQuant is specifically well suited for analysis of jigsaw puzzle-like leaf epidermis pavement cells from 2D input images and supports the quantification of global, contour-based, skeleton-based, and pavement cell-specific shape descriptors.
Preprints

Mitra, D.; Kumari, P.; Quegwer, J.; Klemm, S.; Möller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K.; Microtubule-associated protein IQ67 DOMAIN5 regulates interdigitation of leaf pavement cells in Arabidopsis thaliana bioRxiv (2018) DOI: 10.1101/268466

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis, as indicated by reduced interdigitation of neighboring cells in the leaf epidermis of iqd5 mutants. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced asymmetric expansion. Lastly, we provide evidence for IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate multi-polar growth in PCs.
Bücher und Buchkapitel

Weichert, H.; Maucher, H.; Hornung, E.; Wasternack, C.; Feussner, I.; Shift in Fatty Acid and Oxylipin Pattern of Tomato Leaves Following Overexpression of the Allene Oxide Cyclase 275-278, (2003) DOI: 10.1007/978-94-017-0159-4_64

Polyunsaturated fatty acids (PUFAs) are a source of numerous oxidation products, the oxylipins. In leaves, α-linolenic acid (α-LeA) is the preferential substrate for lipid peroxidation reactions. This reaction may be catalyzed either by a 9-lipoxygenase (9-LOX) or by a 13-LOX and oxygen is inserted regioselectively as well as stereospecifically leading to formation of 13S- or 9S-hydroperoxy octadecatrienoic acid (13-/9-HPOT; Brash, 1999). At least, seven different enzyme families or reaction branches within the LOX pathway can use these HPOTs or other hydroperoxy PUFAs leading to (i) keto-PUFAs (LOX); (ii) epoxy hydroxy-PUFAs (epoxy alcohol synthase, EAS); (iii) octadecanoids and jasmonates (allene oxide synthase, AOS); (iv) leaf aldehydes and leaf alcohols (hydroperoxide lyase, HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs (divinyl ether synthase, DES); and (vii) epoxy- or dihydrodiol-PUFAs (peroxygenase, PDX; Fig. 1; Feussner and Wasternack, 2002).
IPB Mainnav Search