zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 15.

Publikation

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; Corrigendum: ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 99, 949-949, (2018) DOI: 10.1099/jgv.0.001093

0
Publikation

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 98, 1161-1162, (2017) DOI: 10.1099/jgv.0.000836

The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3–12.5 kb divided into 3–4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.
Bücher und Buchkapitel

Vaira, A. M.; Gago-Zachert, S.; Garcia, M. L.; Guerri, J.; Hammond, J.; Milne, R. G.; Moreno, P.; Morikawa, T.; Natsuaki, T.; Navarro, J. A.; Pallas, V.; Torok, V.; Verbeek, M.; Vetten, H. J.; Family - Ophioviridae (King, A. M. Q., et al., eds.). 743-748, (2012) DOI: 10.1016/B978-0-12-384684-6.00060-4

This chapter focuses on Ophioviridae family whose sole member genus is Ophiovirus. The member species of the genus include Citrus psorosis virus (CPsV), Freesia sneak virus(FreSV), Lettuce ring necrosis virus (LRNV), and Mirafiori lettuce big-vein virus (MiLBVV).The single stranded negative/possibly ambisense RNA genome is divided into 3–4 segments, each of which is encapsidated in a single coat protein (43–50 kDa) forming filamentous virions of about 3 nm in diameter, in shape of kinked or probably internally coiled circles of at least two different contour lengths. Ophioviruses can be mechanically transmitted to a limited range of test plants, inducing local lesions and systemic mottle. The natural hosts of CPsV, ranunculus white mottle virus (RWMV), MiLBVV, and LRNV are dicotyledonous plants of widely differing taxonomy. CPsV has a wide geographical distribution in citrus in the Americas, in the Mediterranean and in New Zealand. FreSV has been reported in two species of the family Ranunculacae from Northern Italy, and in lettuce in France and Germany. Tulip mild mottle mosaic virus (TMMMV) has been reported in tulips in Japan. LRNV is closely associated with lettuce ring necrosis disease in The Netherlands, Belgium, and France, and FreSV has been reported in Europe, Africa, North America and New Zealand.
Publikation

Schilling, S.; Wasternack, C.; Demuth, H.-U.; Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution Biol. Chem. 389, (2008) DOI: 10.1515/BC.2008.111

Several mammalian peptide hormones and proteins from plant and animal origin contain an N-terminal pyroglutamic acid (pGlu) residue. Frequently, the moiety is important in exerting biological function in either mediating interaction with receptors or stabilizing against N-terminal degradation. Glutaminyl cyclases (QCs) were isolated from different plants and animals catalyzing pGlu formation. The recent resolution of the 3D structures of Carica papaya and human QCs clearly supports different evolutionary origins of the proteins, which is also reflected by different enzymatic mechanisms. The broad substrate specificity is revealed by the heterogeneity of physiological substrates of plant and animal QCs, including cytokines, matrix proteins and pathogenesis-related proteins. Moreover, recent evidence also suggests human QC as a catalyst of pGlu formation at the N-terminus of amyloid peptides, which contribute to Alzheimer's disease. Obviously, owing to its biophysical properties, the function of pGlu in plant and animal proteins is very similar in terms of stabilizing or mediating protein and peptide structure. It is possible that the requirement for catalysis of pGlu formation under physiological conditions may have triggered separate evolution of QCs in plants and animals.
Publikation

Vigliocco, A.; Alemano, S.; Miersch, O.; Alvarez, D.; Abdala, G.; Endogenous jasmonates in dry and imbibed sunflower seeds from plants grown at different soil moisture contents Seed Sci. Res. 17, 91-98, (2007) DOI: 10.1017/S0960258507708371

In this study, we characterized two sunflower (Helianthus annuus L.) lines with differential sensitivity to drought, the sensitive line B59 and the tolerant line B71. Using both lines, we compared the content of endogenous jasmonates (JAs) in dry and imbibed seeds from plants grown under irrigation and drought. Jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), 11-hydroxyjasmonate (11-OH-JA) and 12-hydroxyjasmonate (12-OH-JA) were detected in dry and imbibed sunflower seeds. Seeds from plants grown under drought had a lower content of total JAs and exhibited higher germination percentages than seeds from irrigated plants, demonstrating that environmental conditions have a strong influence on the progeny. OPDA and 12-OH-JA were the main compounds found in dry seeds of both lines. Imbibed seeds showed an enhanced amount of total JAs with respect to dry seeds produced by plants grown in both soil moisture conditions. Imbibition triggered a dramatic OPDA increase in the embryo, suggesting a role of this compound in germination. We conclude that JAs patterns vary during sunflower germination and that the environmental conditions experienced by the mother plant modify the hormonal content of the seed progeny.
Publikation

Schilling, S.; Stenzel, I.; von Bohlen, A.; Wermann, M.; Schulz, K.; Demuth, H.-U.; Wasternack, C.; Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions Biol. Chem. 388, 145-153, (2007) DOI: 10.1515/BC.2007.016

Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamic acid at the N-terminus of several peptides and proteins. On the basis of the amino acid sequence of Carica papaya QC, we identified cDNAs of the putative counterparts from Solanum tuberosum and Arabidopsis thaliana. Upon expression of the corresponding cDNAs from both plants via the secretory pathway of Pichia pastoris, two active QC proteins were isolated. The specificity of the purified proteins was assessed using various substrates with different amino acid composition and length. Highest specificities were observed with substrates possessing large hydrophobic residues adjacent to the N-terminal glutamine and for fluorogenic dipeptide surrogates. However, compared to Carica papaya QC, the specificity constants were approximately one order of magnitude lower for most of the QC substrates analyzed. The QCs also catalyzed the conversion of N-terminal glutamic acid to pyroglutamic acid, but with approximately 105- to 106-fold lower specificity. The ubiquitous distribution of plant QCs prompted a search for potential substrates in plants. Based on database entries, numerous proteins, e.g., pathogenesis-related proteins, were found that carry a pyroglutamate residue at the N-terminus, suggesting QC involvement. The putative relevance of QCs and pyroglutamic acid for plant defense reactions is discussed.
Publikation

Pedranzani, H.; Sierra-de-Grado, R.; Vigliocco, A.; Miersch, O.; Abdala, G.; Cold and water stresses produce changes in endogenous jasmonates in two populations of Pinus pinaster Ait Plant Growth Regul. 52, 111-116, (2007) DOI: 10.1007/s10725-007-9166-2

There is considerable evidence suggesting that jasmonates (JAs) play a role in plant resistance against abiotic stress. It is well known that in Angiosperms JAs are involved in the defense response, however there is little information about their role in Gymnosperms. Our proposal was to study the involvement of JAs in Pinus pinaster Ait. reaction to cold and water stress, and to compare the response of two populations of different provenances (Gredos and Bajo Tiétar) to these stresses. We detected 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and the hydroxylates 11-hydroxyjasmonate and 12-hydroxyjasmonate in foliage and shoots of P. pinaster plants. The response of the Gredos population to cold stress differed from that of Bajo Tiétar. Gredos plants showed a lower JA-basal level than Bajo Tiétar; under cold stress JA increased twofold at 72 h, while it decreased in Bajo Tiétar plants. The hydroxylates slightly increased in both populations due to cold stress treatment. Under water stress, plants from Gredos showed a remarkable JA-increase; thus the JA-response was much more prominent under water stress than under cold stress. In contrast, no change was found in JA-level in Bajo Tiétar plants under water stress. The level of JA-precursor, OPDA, was very low in control plants from Gredos and Bajo Tiétar. Under water stress OPDA increased only in plants from Bajo Tiétar. Therefore, we inform here of a different JAs-accumulation pattern after the stress treatment in P. pinaster from two provenances, and suggest a possible correlation with adaptations to diverse ecological conditions.
Publikation

Andrade, A.; Vigliocco, A.; Alemano, S.; Miersch, O.; Botella, M. A.; Abdala, G.; Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress Seed Sci. Res. 15, 309-318, (2005) DOI: 10.1079/SSR2005219

Although jasmonates (JAs) are involved in germination and seedling development, the regulatory mechanism of JAs, and their relation with endogenous level modifications in these processes, is not well understood. We report here the detection of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), 11-hydroxyjasmonate (11-OH-JA), 12-hydroxyjasmonate (12-OH-JA) and methyljasmonate (JAME) in unimbibed seeds and seedlings of tomato Lycopersicon esculentum Mill cv. Moneymaker (wild type) and tss1, tss2, tos1 mutants. The main compounds in wild-type and tss1, tss2, tos1 seeds were the hydroxylate-JAs; 12-OH-JA was the major component in dry seeds of the wild type and in tss2 and tos1. The amounts of these derivatives were higher in seeds than in seedlings. Changes in JAs during wild-type and tss1 imbibition were analysed in seeds and the imbibition water. In wild-type imbibed seeds, 11-OH-JA content was higher than in tss1. 12-OH-JA showed a different tendency with respect to 11-OH-JA, with high levels in the wild type at early imbibition. In tss1, levels of 12-OH-JA rose from 24 to 48 h of imbibition. At 72 h of imbibition, when radicles had emerged, the amounts of both hydroxylates in wild-type and tss1 seeds were minimal. An important release of the hydroxylate forms was observed in the imbibition water. 11-OH-JA decreased in the imbibition water of wild-type seeds at 48 h. On the contrary, a high and sustained liberation of this compound was observed in tss1 after 24 h. 12-OH-JA increased in wild-type as well in tss1 until 24 h. Thereafter, a substantial reduction in the content of this compound was registered. NaCl-treated wild-type seedlings increased their 12-OH-JA, but tss1 seedlings increased their JA in response to salt treatment. In tss2 seedlings, NaCl caused a slight decrease in 11-OH-JA and JAME, whereas tos1 seedlings showed a dramatic OPDA and 12-OH-JA decrease in response to salt treatment. Under salt stress the mutant seedlings showed different patterns of JAs according to their differential hypersensitivity to abiotic stress. The JA-hydroxylate forms found, and the differential accumulation of JAs during germination, imbibition and seedling development, as well as their response to NaCl stress, provide new evidence about the control of many developmental processes by JA.
Bücher und Buchkapitel

Vaira, A. M.; Acotto, G. P.; Gago-Zachert, S.; Garcia, M. L.; Grau, O.; Milne, R. G.; Morikawa, T.; Natsuaki, T.; Torov, V.; Verbeek, M.; Vetten, H. J.; Genus Ophiovirus 673-679, (2005) ISBN: 9780080575483 DOI: 10.1016/B978-0-12-249951-7.50014-6

0
Publikation

Abdala, G.; Miersch, O.; Kramell, R.; Vigliocco, A.; Agostini, E.; Forchetti, G.; Alemano, S.; Jasmonate and octadecanoid occurrence in tomato hairy roots. Endogenous level changes in response to NaCl Plant Growth Regul. 40, 21-27, (2003) DOI: 10.1023/A:1023016412454

Jasmonic acid biosynthesis occurs in leaves and there is also evidence of a similar pathway in roots. The expression of lipoxygenase, allene oxide cyclase and low amounts of transcripts of allene oxide synthase in tomato roots indicates that some steps of the jasmonate synthesis may occur in these organs. Thus, the aim of the present work was to study the jasmonate and octadecanoid occurrence in tomato roots using isolated cultures of hairy roots. These were obtained by the transformation of cv. Pera roots with Agrobacterium rhyzogenes. Also we investigated the effect of NaCl stress on the endogenous levels of these compounds. Jasmonic acid, 12-oxophytodienoic acid and their methylated derivatives, as well as a jasmonate-isoleucine conjugate, were present in control hairy roots of 30 d of culture. The 12-oxophytodienoic acid and its methylated derivative showed higher levels than jasmonic acid and its methylated form, although the content of the conjugate was the same as that of jasmonic acid. After salinization of hairy roots for 14, 20 and 30 d, free jasmonates and octadecanoids were measured. Fourteen days after salt treatment, increased levels of these compounds were found, jasmonic acid and 12-oxophytodienoic acid showed the most remarkable rise. 11-OH-jasmonic acid was found at 14 d of culture in control and salt-treated hairy roots; whereas the 12-OH- form of jasmonic acid was only detected in the salt-treated hairy roots. Agrobacterium rhizogenes cultures did not produce jasmonates and/or octadecanoids.
IPB Mainnav Search