zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 12.

Publikation

Robson, F.; Okamoto, H.; Patrick, E.; Harris, S.-R.; Wasternack, C.; Brearley, C.; Turner, J. G.; Jasmonate and Phytochrome A Signaling in Arabidopsis Wound and Shade Responses Are Integrated through JAZ1 Stability Plant Cell 22, 1143-1160, (2010) DOI: 10.1105/tpc.109.067728

Jasmonate (JA) activates plant defense, promotes pollen maturation, and suppresses plant growth. An emerging theme in JA biology is its involvement in light responses; here, we examine the interdependence of the JA- and light-signaling pathways in Arabidopsis thaliana. We demonstrate that mutants deficient in JA biosynthesis and signaling are deficient in a subset of high irradiance responses in far-red (FR) light. These mutants display exaggerated shade responses to low, but not high, R/FR ratio light, suggesting a role for JA in phytochrome A (phyA) signaling. Additionally, we demonstrate that the FR light–induced expression of transcription factor genes is dependent on CORONATINE INSENSITIVE1 (COI1), a central component of JA signaling, and is suppressed by JA. phyA mutants had reduced JA-regulated growth inhibition and VSP expression and increased content of cis-(+)-12-oxophytodienoic acid, an intermediate in JA biosynthesis. Significantly, COI1-mediated degradation of JASMONATE ZIM DOMAIN1-β-glucuronidase (JAZ1-GUS) in response to mechanical wounding and JA treatment required phyA, and ectopic expression of JAZ1-GUS resulted in exaggerated shade responses. Together, these results indicate that JA and phyA signaling are integrated through degradation of the JAZ1 protein, and both are required for plant responses to light and stress.
Publikation

Mugford, S. G.; Yoshimoto, N.; Reichelt, M.; Wirtz, M.; Hill, L.; Mugford, S. T.; Nakazato, Y.; Noji, M.; Takahashi, H.; Kramell, R.; Gigolashvili, T.; Flügge, U.-I.; Wasternack, C.; Gershenzon, J.; Hell, R.; Saito, K.; Kopriva, S.; Disruption of Adenosine-5′-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites Plant Cell 21, 910-927, (2009) DOI: 10.1105/tpc.109.065581

Plants can metabolize sulfate by two pathways, which branch at the level of adenosine 5′-phosphosulfate (APS). APS can be reduced to sulfide and incorporated into Cys in the primary sulfate assimilation pathway or phosphorylated by APS kinase to 3′-phosphoadenosine 5′-phosphosulfate, which is the activated sulfate form for sulfation reactions. To assess to what extent APS kinase regulates accumulation of sulfated compounds, we analyzed the corresponding gene family in Arabidopsis thaliana. Analysis of T-DNA insertion knockout lines for each of the four isoforms did not reveal any phenotypical alterations. However, when all six combinations of double mutants were compared, the apk1 apk2 plants were significantly smaller than wild-type plants. The levels of glucosinolates, a major class of sulfated secondary metabolites, and the sulfated 12-hydroxyjasmonate were reduced approximately fivefold in apk1 apk2 plants. Although auxin levels were increased in the apk1 apk2 mutants, as is the case for most plants with compromised glucosinolate synthesis, typical high auxin phenotypes were not observed. The reduction in glucosinolates resulted in increased transcript levels for genes involved in glucosinolate biosynthesis and accumulation of desulfated precursors. It also led to great alterations in sulfur metabolism: the levels of sulfate and thiols increased in the apk1 apk2 plants. The data indicate that the APK1 and APK2 isoforms of APS kinase play a major role in the synthesis of secondary sulfated metabolites and are required for normal growth rates.
Publikation

Lee, C.-W.; Efetova, M.; Engelmann, J. C.; Kramell, R.; Wasternack, C.; Ludwig-Müller, J.; Hedrich, R.; Deeken, R.; Agrobacterium tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana Plant Cell 21, 2948-2962, (2009) DOI: 10.1105/tpc.108.064576

Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis–Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria.
Publikation

Brüx, A.; Liu, T.-Y.; Krebs, M.; Stierhof, Y.-D.; Lohmann, J. U.; Miersch, O.; Wasternack, C.; Schumacher, K.; Reduced V-ATPase Activity in the trans-Golgi Network Causes Oxylipin-Dependent Hypocotyl Growth Inhibition in Arabidopsis Plant Cell 20, 1088-1100, (2008) DOI: 10.1105/tpc.108.058362

Regulated cell expansion allows plants to adapt their morphogenesis to prevailing environmental conditions. Cell expansion is driven by turgor pressure created by osmotic water uptake and is restricted by the extensibility of the cell wall, which in turn is regulated by the synthesis, incorporation, and cross-linking of new cell wall components. The vacuolar H+-ATPase (V-ATPase) could provide a way to coordinately regulate turgor pressure and cell wall synthesis, as it energizes the secondary active transport of solutes across the tonoplast and also has an important function in the trans-Golgi network (TGN), which affects synthesis and trafficking of cell wall components. We have previously shown that det3, a mutant with reduced V-ATPase activity, has a severe defect in cell expansion. However, it was not clear if this is caused by a defect in turgor pressure or in cell wall synthesis. Here, we show that inhibition of the tonoplast-localized V-ATPase subunit isoform VHA-a3 does not impair cell expansion. By contrast, inhibition of the TGN-localized isoform VHA-a1 is sufficient to restrict cell expansion. Furthermore, we provide evidence that the reduced hypocotyl cell expansion in det3 is conditional and due to active, hormone-mediated growth inhibition caused by a cell wall defect.
Publikation

Wasternack, C.; Stenzel, I.; Hause, B.; Hause, G.; Kutter, C.; Maucher, H.; Neumerkel, J.; Feussner, I.; Miersch, O.; The wound response in tomato – Role of jasmonic acid J. Plant Physiol. 163, 297-306, (2006) DOI: 10.1016/j.jplph.2005.10.014

Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.
Publikation

Ellis, C.; Karafyllidis, I.; Wasternack, C.; Turner, J. G.; The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses Plant Cell 14, 1557-1566, (2002) DOI: 10.1105/tpc.002022

Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.
Publikation

Hause, B.; Vörös, K.; Kogel, K.-H.; Besser, K.; Wasternack, C.; A Jasmonate-responsive Lipoxygenase of Barley Leaves is Induced by Plant Activators but not by Pathogens J. Plant Physiol. 154, 459-462, (1999) DOI: 10.1016/S0176-1617(99)80283-1

Using the recently isolated eDNA clone LOX2 : Hv : 1 which codes for the most abundant jasmonateinducible lipoxygenase (LOX) in barley leaves (Vörös et al., 1998), we analysed the capability of different activators of systemic activated resistance (SAR) to induce the expression of that LOX. Upon treatment of barley leaves with salicylate, 2,6-dichloroisonicotinic acid and benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester, all these compounds were able to induce the expression of the LOX2 : Hv : 1 gene, whereas upon infection with the powdery mildew fungus (Blumeria graminis f. sp. hordei) mRNA accumulation was not detectable in compatible or in incompatible interactions. The induction of the LOX2 : Hv : 1 protein by SAR activators and the expression of different sets of genes induced by jasmonate and salicylate, respectively, are discussed in relation to defense responses against pathogenic fungi.
Publikation

Wasternack, C.; Ortel, B.; Miersch, O.; Kramell, R.; Beale, M.; Greulich, F.; Feussner, I.; Hause, B.; Krumm, T.; Boland, W.; Parthier, B.; Diversity in octadecanoid-induced gene expression of tomato J. Plant Physiol. 152, 345-352, (1998) DOI: 10.1016/S0176-1617(98)80149-1

In tomato plants wounding leads to up-regulation of various plant defense genes via jasmonates (Ryan, 1992; Bergey et al., 1996). Using this model system of jasmonic acid (JA) signalling, we analyzed activity of octadecanoids to express JA-responsive genes. Leaf treatments were performed with naturally occurring octadecanoids and their molecular mimics such as coronatine or indanone conjugates. JA responses were recorded in terms of up- or down-regulation of various genes by analyzing transcript accumulation, and at least partially in vitro translation products and polypeptide pattern of leaf extracts. The data suggest: (i) 12-Oxo-phytodienoic acid and other intermediates of the octadecanoid pathway has to be ß-oxidized to give a JA response, (ii) Octadecanoids which can not be ß-oxidized are inactive, (iii) JA, its methyl ester (JM), and its amino acid conjugates are most active signals in tomato leaves leading to up regulation of mainly wound-inducible genes and down-regulation of mainly <house-keeping> genes, (iv) Some compounds carrying a JA/JM- or JA amino acid conjugate-like structure induce/repress only a subset of genes suggesting diversity of JA signalling.
Publikation

Ratajczak, R.; Feussner, I.; Hause, B.; Böhm, A.; Parthier, B.; Wasternack, C.; Alteration of V-type H+-ATPase during methyljasmonate-induced senescence in barley (Hordeum vulgare L. cv. Salome) J. Plant Physiol. 152, 199-206, (1998) DOI: 10.1016/S0176-1617(98)80133-8

In barley leaves, the application of (−)-jasmonic acid or its methyl ester (JAME) induces a senescencelike phenotype. This is accompanied by the synthesis of abundant proteins, so-called jasmonate-induced proteins (JlPs). Here, we show that modifications of vacuolar H+-ATPase (V-ATPase) subunits are jasmo-nate inducible. Using immunofluorescence analysis, we demonstrate that V-ATPase of barley leaves is exclusively located at the tonoplast also upon JAME treatment. Total ATP-hydrolysis activity of microsomal fractions increased by a factor of 10 during 72 h of JAME-treatment, while Bafilomycin Ai-sensitive ATP-hydrolysis activity, which is usually referred to V-ATPase activity, increased by a factor of about 2 in tono-plast-enriched membrane fractions. Moreover, due to JAME treatment there was a pronounced increase in ATP-hydrolysis activity at pH 6.2. This activity was not affected by inhibitors of P-, F-, or V-ATPases. However, biochemical analysis of partially purified V-ATPase suggests, that this activity might be due at least in part to the V-ATPase. JAME-treatment seems to change biochemical properties of the V-ATPase, i.e. a shift of the pH optimum of activity to a more acidic pH and a decrease in Bafilomycin A1 sensitivity. This is accompanied by the appearance of several additional forms of V-ATPase subunits which might represent either different isoforms or post-translationally modified proteins. We suggest that these changes in properties of the V-ATPase, which is involved in house-keeping and stress responses, may be due to JAME-induced senescence to overcome concomitant changes of the vacuolar membrane.
Publikation

Hause, B.; Kogel, K.-H.; Parthier, B.; Wasternack, C.; In barley leaf cells, jasmonates do not act as a signal during compatible or incompatible interactions with the powdery mildew fungus (Erysiphe graminis f. sp. hordei) J. Plant Physiol. 150, 127-132, (1997) DOI: 10.1016/S0176-1617(97)80191-5

We have studied a possible function of jasmonates as mediators in the host-pathogen interaction of barley (Hordeum vulgare L.) with the powdery mildew fungus Egh (Erysiphe graminis f. sp. hordei). Previous findings from whole-leaf extracts demonstrated that (i) extracts from infected barley leaves did not contain enhanced levels of jasmonates, (ii) transcripts of jasmonate-inducible genes were not expressed upon infection, and (iii) exogenous application of jasmonates did not induce resistance to Egh (Kogel et al., 1995). Nevertheless, the question arises whether or not jasmonates are involved in the interaction of barley with the powdery mildew fungus at the local site of infection. Using an immunocytological approach the analysis of leaf cross-sections from a susceptible barley cultivar and its near-isogenic mlo5-resistant line revealed no accumulation of JIP-23, the most abundant jasmonate inducible protein, neither in epidermal cells attacked by the pathogen nor in adjacent mesophyll cells. As a positive control, cross-sections from methyl jasmonate-treated leaf segments showed a strong signal for JIP-23 accumulation. Because the presence of the jasmonate-inducible protein is highly indicative for an already low threshold level of endogenous jasmonate (Lehmann et al., 1995), the lack of JIP-23 accumulation at the sites of attempted fungal infection clearly demonstrates the absence of enhanced levels of jasmonates. This excludes even a local rise of jasmonate confined to those single cells penetrated (Mlo genotype) or attacked (mlo5 genotype) by the fungus.
IPB Mainnav Search