zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 186.

Publikation

Wasternack, C.; Hause, B.; BFP1: One of 700 Arabidopsis F-box proteins mediates degradation of JA oxidases to promote plant immunity Mol. Plant 17, 375-376, (2024) DOI: 10.1016/j.molp.2024.02.008

0
Preprints

Mik, V.; Poslíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants ChemRxiv (2023) DOI: 10.26434/chemrxiv-2023-qlzj4

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions, similar to other phytohormones. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels reached a maximum of pmol/g. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Current synthetic and analytical methodologies support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Preprints

Brunoni, F.; Široká, J.; Mik, V.; Pospíšil, T.; Kralová, M.; Ament, A.; Pernisová, M.; Karady, M.; Htitich, M.; Ueda, M.; Floková, K.; Wasternack, C.; Strnad, M.; Novák, O.; Conjugation ofcis-OPDA with amino acids is a conserved pathway affectingcis-OPDA homeostasis upon stress responses (2023) DOI: 10.1101/2023.07.18.549545

Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) has been reported to act independently of the COI1-mediated JA signaling in several stress-induced and developmental processes. However, its means of perception and metabolism are only partially understood. Furthermore, cis-OPDA, but not JA, occurs in non-vascular plant species, such as bryophytes, exhibiting specific functions in defense and development. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected in wounded leaves of flowering plants, opening up to the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp in response to biotic and abiotic stress in Arabidopsis. The newly identified OPDA-amino acid conjugates show cis-OPDA-related plant responses in a JAR1-dependent manner. We also discovered that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are regulated by members of the amidosynthetase GH3 and the amidohydrolase ILR1/ILL families. Finally, we found that the cis-OPDA conjugative pathway already functions in non-vascular plants and gymnosperms. Thus, one level of regulation by which plants modulate cis-OPDA homeostasis is the synthesis and hydrolysis of OPDA-amino acid conjugates, which temporarily store cis-OPDA in stress responses.
Publikation

Mik, V.; Pospíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants Phytochemistry 215, 113855, (2023) DOI: 10.1016/j.phytochem.2023.113855

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Publikation

Wasternack, C.; Deciphering the oxylipin signatures of necrotrophic infection in plants. A commentary on: Differential modulation of the lipoxygenase cascade during typical and latent Pectobacterium atrosepticum infections Ann. Bot. 129, i-iii, (2022) DOI: 10.1093/aob/mcab142

0
Publikation

Meena, S.; Wagner, C.; Caggegi, L.; Baumann-Kaschig, K.; Ried, M. K.; A user-friendly protocol for the cultivation and successful crossing of Lotus japonicus Bio Protoc. (2021) DOI: 10.21769/p1464

This is a detailed and user-friendly protocol for the cultivation and successful crossing of Lotus japonicus (L. japonicus) e.g. for the generation of higher order mutants, based on methods previously reported (Grant et al., 1962; Handberg and Stougaards, 1992; Jiang and Gresshoff, 1997; Pajuelo and Stougaard, 2005).
Publikation

Wasternack, C.; Sulfation switch in the shade Nat. Plants 6, 186-187, (2020) DOI: 10.1038/s41477-020-0620-8

Plants adjust the balance between growth and defence using photoreceptors and jasmonates. Levels of active jasmonates are reduced in a phytochrome B-dependent manner by upregulation of a 12-hydroxyjasmonate sulfotransferase, leading to increase in shade avoidance and decrease in defence.
Publikation

Wasternack, C.; Determination of sex by jasmonate J. Integr. Plant Biol. 62, 162-164, (2020) DOI: 10.1111/jipb.12840

0
Publikationen in Druck

Ried, M. K.; Wild, R.; Zhu, J.; Broger, L.; Harmel, R. K.; Hothorn, L. A.; Fiedler, D.; Hothorn, M.; Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis bioRxiv (2019) DOI: 10.1101/2019.12.13.875393

Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signalling cascades, enabling them to maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signalling molecules (PP-InsPs), which are sensed by SPX-domain containing proteins. In plants, PP-InsP bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8 – SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors.
Publikation

Ried, M. K.; Banhara, A.; Hwu, F.-Y.; Binder, A.; Gust, A. A.; Höfle, C.; Hückelhoven, R.; Nürnberger, T.; Parniske, M.; A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidis PLOS Pathog. 15, e1007747, (2019) DOI: 10.1371/journal.ppat.1007747

The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved.
IPB Mainnav Search