zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 166.

Publikation

Wasternack, C.; Hause, B.; BFP1: One of 700 Arabidopsis F-box proteins mediates degradation of JA oxidases to promote plant immunity Mol. Plant 17, 375-376, (2024) DOI: 10.1016/j.molp.2024.02.008

0
Publikation

Mik, V.; Pospíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants Phytochemistry 215, 113855, (2023) DOI: 10.1016/j.phytochem.2023.113855

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Publikation

Wasternack, C.; Deciphering the oxylipin signatures of necrotrophic infection in plants. A commentary on: Differential modulation of the lipoxygenase cascade during typical and latent Pectobacterium atrosepticum infections Ann. Bot. 129, i-iii, (2022) DOI: 10.1093/aob/mcab142

0
Publikation

Ziegler, J.; Bochnia, M.; Zeyner, A.; Aminosäurennachweis in geringsten ProbenmengenBestimmung von Hypoglycin A Wiley Analytical Science (2021)

0
Publikation

Bochnia, M.; Ziegler, J.; Glatter, M.; Zeyner, A.; Hypoglycin A in cow’s milk—A pilot study Toxins 13, 381, (2021) DOI: 10.3390/toxins13060381

Hypoglycin A (HGA) originating from soapberry fruits (litchi, and ackee) seeds or seedlings from the sycamore maple (SM) tree (related to Sapindaceae) may cause Jamaican vomiting sickness in humans and atypical myopathy in horses and ruminants. A possible transfer into dairy cow’s milk cannot be ruled out since the literature has revealed HGA in the milk of mares and in the offal of captured deer following HGA intoxication. From a study, carried out for another purpose, bulk raw milk samples from four randomly selected dairy farms were available. The cows were pastured in the daytime. A sycamore maple tree was found on the pasture of farm No. 1 only. Bulk milk from the individual tank or milk filling station was sampled in parallels and analyzed for HGA by LC-ESI-MS/MS. Measurable concentrations of HGA occurred only in milk from farm No. 1 and amounted to 120 and 489 nmol/L. Despite low and very variable HGA concentrations, the results indicate that the ingested toxin, once eaten, is transferred into the milk. However, it is unknown how much HGA the individual cow ingested during grazing and what amount was transferred into the bulk milk samples. As a prerequisite for a possible future safety assessment, carry-over studies are needed. Furthermore, the toxins’ stability during milk processing should also be investigated as well.
Publikation

Wasternack, C.; Sulfation switch in the shade Nat. Plants 6, 186-187, (2020) DOI: 10.1038/s41477-020-0620-8

Plants adjust the balance between growth and defence using photoreceptors and jasmonates. Levels of active jasmonates are reduced in a phytochrome B-dependent manner by upregulation of a 12-hydroxyjasmonate sulfotransferase, leading to increase in shade avoidance and decrease in defence.
Publikation

Wasternack, C.; Determination of sex by jasmonate J. Integr. Plant Biol. 62, 162-164, (2020) DOI: 10.1111/jipb.12840

0
Publikation

Wasternack, C.; Hause, B.; The missing link in jasmonic acid biosynthesis Nat. Plants 5, 776-777, (2019) DOI: 10.1038/s41477-019-0492-y

Jasmonic acid biosynthesis starts in chloroplasts and is finalized in peroxisomes. The required export of a crucial intermediate out of the chloroplast is now shown to be mediated by a protein from the outer envelope called JASSY.
Publikation

Wasternack, C.; Termination in Jasmonate Signaling by MYC2 and MTBs Trends Plant Sci. 24, 667-669, (2019) DOI: 10.1016/j.tplants.2019.06.001

Jasmonic acid (JA) signaling can be switched off by metabolism of JA. The master regulator MYC2, interacting with MED25, has been shown to be deactivated by the bHLH transcription factors MTB1, MTB2, and MTB3. An autoregulatory negative feedback loop has been proposed for this termination in JA signaling.
Publikation

Wasternack, C.; New Light on Local and Systemic Wound Signaling Trends Plant Sci. 24, 102-105, (2019) DOI: 10.1016/j.tplants.2018.11.009

Electric signaling and Ca2+ waves were discussed to occur in systemic wound responses. Two new overlapping scenarios were identified: (i) membrane depolarization in two special cell types followed by an increase in systemic cytoplasmic Ca2+ concentration ([Ca2+]cyt), and (ii) glutamate sensed by GLUTAMATE RECEPTOR LIKE proteins and followed by Ca2+-based defense in distal leaves.
IPB Mainnav Search