zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Rekik, I.; Chaabene, Z.; Grubb, C. D.; Drira, N.; Cheour, F.; Elleuch, A. In silico characterization and Molecular modeling of double-strand break repair protein MRE11 from Phoenix dactylifera v deglet nour Theor Biol Med Model 12, 23, (2015) DOI: 10.1186/s12976-015-0013-2

BackgroundDNA double-strand breaks (DSBs) are highly cytotoxic and mutagenic. MRE11 plays an essential role in repairing DNA by cleaving broken ends through its 3′ to 5′ exonuclease and single-stranded DNA endonuclease activities.MethodsThe present study aimed to in silico characterization and molecular modeling of MRE11 from Phoenix dactylifera L cv deglet nour (DnMRE11) by various bioinformatic approaches. To identify DnMRE11 cDNA, assembled contigs from our cDNA libraries were analysed using the Blast2GO2.8 program.ResultsThe DnMRE11 protein length was 726 amino acids. The results of HUMMER show that DnMRE11 is formed by three domains: the N-terminal core domain containing the nuclease and capping domains, the C-terminal half containing the DNA binding and coiled coil region. The structure of DnMRE11 is predicted using the Swiss-Model server, which contains the nuclease and capping domains. The obtained model was verified with the structure validation programs such as ProSA and QMEAN servers for reliability. Ligand binding studies using COACH indicated the interaction of DnMRE11 protein with two Mn2+ ions and dAMP. The ConSurf server predicted that residues of the active site and Nbs binding site have high conservation scores between plant species.ConclusionsA model structure of DnMRE11 was constructed and validated with various bioinformatics programs which suggested the predicted model to be satisfactory. Further validation studies were conducted by COACH analysis for active site ligand prediction, and revealed the presence of six ligands binding sites and two ligands (2 Mn2+ and dAMP).
Bücher und Buchkapitel

Wasternack, C. Jasmonates in Stress, Growth, and Development (H. Hirt). WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 91 - 118, (2010) ISBN: 978-3-527-32290-9 DOI: 10.1002/9783527628964.ch5

0
Publikation

Wasternack, C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development Annals of Botany 100, 681-697, (2007) DOI: 10.1093/aob/mcm079

0
Publikation

Feussner, K.; Guranowski, A.; Kostka, S.; Wasternack, C. Diadenosine 5'5'''-P1,P4-tetraphosphate (Ap4A) hydrolase from tomato (<EM>Lycopersicon esculentum</EM> cv. Lukullus) - Purification, Biochemical properties and behaviour during stress Z. Naturforsch. 51c, 477-486, (1996)

0
IPB Mainnav Search