zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: sort ascending Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 16.

Bücher und Buchkapitel

Feussner, I.; Kühn, H.; Wasternack, C.; Do Lipoxygenases Initiate β-Oxidation? 250-252, (1997) DOI: 10.1007/978-94-017-2662-7_79

The etiolated germination process of oilseed plants is characterized by the mobilization of storage lipids which serve as a major carbon source for the seedlings growth. During this stage the lipid storing organelles, the lipid bodies, are degraded and a new set of proteins, including a specific form of lipoxygenase (LOX), is detectable at their membranes in different plants [1,2]. LOXs are widely distributed in plants and animals and catalyze the regio- and stereo-specific oxygenation of polyunsaturated fatty acids [3]. The enzymatic transformations of the resulting fatty acid hydroperoxides have been extensively studied [4]. Three well characterized enzymes, a lyase, an allene oxide synthase, and a peroxygenase, were shown to degrade hydroperoxides into compounds of physiological importance, such as odors, oxylipins, and jasmonates. We have recently reported a new LOX reaction in plants where a specific LOX, the lipid body LOX, metabolizes esterified fatty acids. This reaction resulted in the formation of 13(S)-hydroxy-linoleic acid (13-HODE) and lead us to propose an additional branch of the LOX pathway: the reductase pathway. Besides a specific LOX form we suggest two additional enzyme activities, a lipid hydroperoxide reductase and a lipid hydroxide-specific lipase which lead to the formation of 13-HODE. 13-HODE might be the endogenous substrate for β-oxidation in the glyoxysomes during germination of oilseeds containing high amounts of polyunsaturated fatty acids.
Bücher und Buchkapitel

Kohlmann, M.; Kuntzsch, A.; Wasternack, C.; Feussner, I.; Effect of Jasmonic Acid Methyl Ester on Enzymes of Lipoxygenase Pathway in Barley Leaves 339-340, (1998)

0
Bücher und Buchkapitel

Feussner, I.; Balkenhohl, T. J.; Porzel, A.; Kühn, H.; Wasternack, C.; Structural Elucidation of Oxygenated Triacylglycerols in Cucumber and Sunflower Cotyledons 57-58, (1998)

0
Bücher und Buchkapitel

Feussner, I.; Blée, E.; Weichert, H.; Rousset, C.; Wasternack, C.; Fatty Acid Catabolism at the Lipid Body Membrane of Germinating Cucumber Cotyledons 311-313, (1998)

0
Bücher und Buchkapitel

Balkenhohl, T.; Kühn, H.; Wasternack, C.; Feussner, I.; A Lipase Specific for Esterified Oxygenated Polyenoic Fatty Acids in Lipid Bodies of Cucumber Cotyledons 320-322, (1998)

0
Bücher und Buchkapitel

Bachmann, A.; Kohlmann, M.; Wasternack, C.; Feussner, I.; Oxylipins in Sorbitol-Stressed Barley Leaf Segments 288-290, (1998)

0
Publikation

Weichert, H.; Kolbe, A.; Wasternack, C.; Feussner, I.; Formation of 4-hydroxy-2-alkenals in barley leaves Biochem. Soc. Trans. 28, 850-851, (2000) DOI: 10.1042/bst0280850

In barley leaves 13-lipoxygenases are induced by jasmonates. This leads to induction of lipid peroxidation. Here we show by in vitro studies that these processes may further lead to autoxidative formation of (2E)-4-hydroxy-2-hexenal from (3Z)-hexenal.
Publikation

Weichert, H.; Kohlmann, M.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins upon sorbitol treatment in barley leaves Biochem. Soc. Trans. 28, 861-862, (2001) DOI: 10.1042/bst0280861

In barley leaves 13-lipoxygenases (LOXs) are induced by salicylate and jasmonate. Here, we analyse by metabolic profiling the accumulation of oxylipins upon sorbitol treatment. Although 13-LOX-derived products are formed and specifically directed into the reductase branch of the LOX pathway, accumulation is much later than in the cases of salicylate and jasmonate treatment. In addition, under these conditions only the accumulation of jasmonates as additional products of the LOX pathway has been found.
Bücher und Buchkapitel

Weichert, H.; Maucher, H.; Hornung, E.; Wasternack, C.; Feussner, I.; Shift in Fatty Acid and Oxylipin Pattern of Tomato Leaves Following Overexpression of the Allene Oxide Cyclase 275-278, (2003) DOI: 10.1007/978-94-017-0159-4_64

Polyunsaturated fatty acids (PUFAs) are a source of numerous oxidation products, the oxylipins. In leaves, α-linolenic acid (α-LeA) is the preferential substrate for lipid peroxidation reactions. This reaction may be catalyzed either by a 9-lipoxygenase (9-LOX) or by a 13-LOX and oxygen is inserted regioselectively as well as stereospecifically leading to formation of 13S- or 9S-hydroperoxy octadecatrienoic acid (13-/9-HPOT; Brash, 1999). At least, seven different enzyme families or reaction branches within the LOX pathway can use these HPOTs or other hydroperoxy PUFAs leading to (i) keto-PUFAs (LOX); (ii) epoxy hydroxy-PUFAs (epoxy alcohol synthase, EAS); (iii) octadecanoids and jasmonates (allene oxide synthase, AOS); (iv) leaf aldehydes and leaf alcohols (hydroperoxide lyase, HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs (divinyl ether synthase, DES); and (vii) epoxy- or dihydrodiol-PUFAs (peroxygenase, PDX; Fig. 1; Feussner and Wasternack, 2002).
Bücher und Buchkapitel

Stenzel, I.; Hause, B.; Feussner, I.; Wasternack, C.; Transcriptional Activation of Jasmonate Biosynthesis Enzymes is not Reflected at Protein Level 267-270, (2003) DOI: 10.1007/978-94-017-0159-4_62

Jasmonic acid (JA) and its precursor 12-oxo phytodienoic acid (OPDA) are lipid-derived signals in plant stress responses and development (Wasternack and Hause, 2002). Within the wound-response pathway of tomato, a local response of expression of defense genes such as the proteinase inhibitor 2 gene (PIN2) is preceded by a rise in JA (Herde et al., 1996; Howe et al., 1996) and ethylene (O’Donnell et al., 1996). Mutants affected in JA biosynthesis such as defl (Howe et al., 1996) or spr-2 (Li et al., 2002) clearly indicated that JA biosynthesis is an ultimate part of wound signaling. It is less understood, however, how the rise in JA is regulated.
IPB Mainnav Search