zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Dinesh, D. C.; Calderón Villalobos, L. I. A.; Abel, S.; Structural Biology of Nuclear Auxin Action Trends Plant Sci. 21, 302-316, (2016) DOI: 10.1016/j.tplants.2015.10.019

Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.
Publikation

Flores, R.; Gas, M.-E.; Molina-Serrano, D.; Nohales, M.-?.; Carbonell, A.; Gago, S.; De la Peña, M.; Daròs, J.-A.; Viroid Replication: Rolling-Circles, Enzymes and Ribozymes Viruses 1, 317-334, (2009) DOI: 10.3390/v1020317

Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5’ and 3’ termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.
Bücher und Buchkapitel

Flores, R.; Carbonell, A.; Gago, S.; Martínez de Alba, A.-E.; Delgado, S.; Rodio, M.-E.; Di Serio, F.; Viroid-host interactions: A molecular dialogue between two uneven partners Biology of Plant-Microbe Interactions 6, 1-9, (2008)

0
Publikation

Ticconi, C. A.; Abel, S.; Short on phosphate: plant surveillance and countermeasures Trends Plant Sci. 9, 548-555, (2004) DOI: 10.1016/j.tplants.2004.09.003

Metabolism depends on inorganic phosphate (Pi) as reactant, allosteric effector and regulatory moiety in covalent protein modification. To cope with Pi shortage (a common situation in many ecosystems), plants activate a set of adaptive responses to enhance Pi recycling and acquisition by reprogramming metabolism and restructuring root system architecture. The physiology of Pi starvation responses has become well understood, and so current research focuses on the initial molecular events that sense, transmit and integrate information about external and internal Pi status. Recent studies have provided evidence for Pi as a signaling molecule and initial insight into the coordination of Pi deficiency responses at the cellular and molecular level.
IPB Mainnav Search