zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Bücher und Buchkapitel

Carbonell, A.; Flores, R.; Gago, S.; Hammerhead Ribozymes Against Virus and Viroid RNAs (Erdmann, V. A. & Barciszewski, J., eds.). RNA Technologies 411-427, (2012) ISBN: 978-3-642-27426-8 DOI: 10.1007/978-3-642-27426-8_16

The hammerhead ribozyme, a small catalytic motif that promotes self-cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically in trans other RNAs in the presence of Mg2+. To be really effective, hammerheads need to operate at the low concentration of Mg2+ existing in vivo. Evidence has been gathered along the last years showing that tertiary stabilizing motifs (TSMs), particularly interactions between peripheral loops, are critical for the catalytic activity of hammerheads at physiological levels of Mg2+. These TSMs, in two alternative formats, have been incorporated into a new generation of more efficient trans-cleaving hammerheads, some of which are active in vitro and in planta when targeted against the highly structured RNA of a viroid (a small plant pathogen). This strategy has potential to confer protection against other RNA replicons, like RNA viruses infecting plants and animals.
Publikation

Flores, R.; Gas, M.-E.; Molina-Serrano, D.; Nohales, M.-?.; Carbonell, A.; Gago, S.; De la Peña, M.; Daròs, J.-A.; Viroid Replication: Rolling-Circles, Enzymes and Ribozymes Viruses 1, 317-334, (2009) DOI: 10.3390/v1020317

Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5’ and 3’ termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.
Publikation

Flores, R.; Navarro, B.; Gago, S.; De la Peña, M.; Chrysanthemum Chlorotic Mottle Viroid: a System for Reverse Genetics in the Family Avsunviroidae (Hammerhead Viroids) Plant Viruses 1, 27-32, (2007)

Viroids are small single-stranded circular RNAs able to infect plants. Chrysanthemum chlorotic mottle was one of the first viroid diseases reported, but identification and characterization of the causing RNA was delayed by its low accumulation in vivo. Chrysanthemum chlorotic mottle viroid (CChMVd) (398-401 nt) adopts a branched conformation instead of the rod-like secondary structure characteristic of most viroids. The natural sequence variability and the effects of artificial mutants support that the branched conformation is physiologically relevant and additionally stabilized by a kissing-loop interaction critical for RNA in vitro folding and in vivo viability. CChMVd shares structural similarities with peach latent mosaic viroid, with which forms the genus Pelamoviroid within the family Avsunviroidae. CChMVd adopts hammerhead structures that catalyze self-cleavage of the oligomeric strands of both polarities resulting from replication through a symmetric rolling-circle mechanism. The two CChMVd hammerheads display peculiarities: the plus has an extra A close to the central conserved core, and the minus an unsually long helix II. There are non-symptomatic strains (CChMVd-NS) that protect against challenge inoculation with severe strains (CChMVd-S). Introduction by site-directed mutagenesis of one of the CChMVd-NS specific mutations (UUUC?GAAA) is sufficient to change the symptomatic phenotype into non-symptomatic without altering the viroid titer. This pathogenicity determinant maps at a tetraloop of the CChMVd branched conformation. Co-inoculations with typical CChMVd-S and -NS variants showed that the infected plants remain symptomless only when the latter was in more than a 100-fold excess, indicating the higher fitness of the S variant. RNA silencing could mediate the observed cross-protection.
IPB Mainnav Search