zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Calderón Villalobos, L. I. A.; Lee, S.; De Oliveira, C.; Ivetac, A.; Brandt, W.; Armitage, L.; Sheard, L. B.; Tan, X.; Parry, G.; Mao, H.; Zheng, N.; Napier, R.; Kepinski, S.; Estelle, M.; A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin Nat. Chem. Biol. 8, 477-485, (2012) DOI: 10.1038/nchembio.926

The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response.
Publikation

Antolín-Llovera, M.; Ried, M. K.; Binder, A.; Parniske, M.; Receptor Kinase Signaling Pathways in Plant-Microbe Interactions Annu. Rev. Phytopathol. 50, 451-473, (2012) DOI: 10.1146/annurev-phyto-081211-173002

Plant receptor-like kinases (RLKs) function in diverse signaling pathways, including the responses to microbial signals in symbiosis and defense. This versatility is achieved with a common overall structure: an extracytoplasmic domain (ectodomain) and an intracellular protein kinase domain involved in downstream signal transduction. Various surfaces of the leucine-rich repeat (LRR) ectodomain superstructure are utilized for interaction with the cognate ligand in both plant and animal receptors. RLKs with lysin-motif (LysM) ectodomains confer recognitional specificity toward N-acetylglucosamine-containing signaling molecules, such as chitin, peptidoglycan (PGN), and rhizobial nodulation factor (NF), that induce immune or symbiotic responses. Signaling downstream of RLKs does not follow a single pattern; instead, the detailed analysis of brassinosteroid (BR) signaling, innate immunity, and symbiosis revealed at least three largely nonoverlapping pathways. In this review, we focus on RLKs involved in plant-microbe interactions and contrast the signaling pathways leading to symbiosis and defense.
Bücher und Buchkapitel

Vaira, A. M.; Gago-Zachert, S.; Garcia, M. L.; Guerri, J.; Hammond, J.; Milne, R. G.; Moreno, P.; Morikawa, T.; Natsuaki, T.; Navarro, J. A.; Pallas, V.; Torok, V.; Verbeek, M.; Vetten, H. J.; Family - Ophioviridae (King, A. M. Q., et al., eds.). 743-748, (2012) DOI: 10.1016/B978-0-12-384684-6.00060-4

This chapter focuses on Ophioviridae family whose sole member genus is Ophiovirus. The member species of the genus include Citrus psorosis virus (CPsV), Freesia sneak virus(FreSV), Lettuce ring necrosis virus (LRNV), and Mirafiori lettuce big-vein virus (MiLBVV).The single stranded negative/possibly ambisense RNA genome is divided into 3–4 segments, each of which is encapsidated in a single coat protein (43–50 kDa) forming filamentous virions of about 3 nm in diameter, in shape of kinked or probably internally coiled circles of at least two different contour lengths. Ophioviruses can be mechanically transmitted to a limited range of test plants, inducing local lesions and systemic mottle. The natural hosts of CPsV, ranunculus white mottle virus (RWMV), MiLBVV, and LRNV are dicotyledonous plants of widely differing taxonomy. CPsV has a wide geographical distribution in citrus in the Americas, in the Mediterranean and in New Zealand. FreSV has been reported in two species of the family Ranunculacae from Northern Italy, and in lettuce in France and Germany. Tulip mild mottle mosaic virus (TMMMV) has been reported in tulips in Japan. LRNV is closely associated with lettuce ring necrosis disease in The Netherlands, Belgium, and France, and FreSV has been reported in Europe, Africa, North America and New Zealand.
Publikation

Ziegler, J.; Facchini, P. J.; Geißler, R.; Schmidt, J.; Ammer, C.; Kramell, R.; Voigtländer, S.; Gesell, A.; Pienkny, S.; Brandt, W.; Evolution of morphine biosynthesis in opium poppy Phytochemistry 70, 1696-1707, (2009) DOI: 10.1016/j.phytochem.2009.07.006

Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum). Comparative transcriptome analysis of opium poppy and several other Papaver species that do not accumulate morphinan alkaloids showed that known genes encoding BIA biosynthetic enzymes are expressed at higher levels in P. somniferum. Three unknown cDNAs that are co-ordinately expressed with several BIA biosynthetic genes were identified as enzymes in the pathway. One of these enzymes, salutaridine reductase (SalR), which is specific for the production of morphinan alkaloids, was isolated and heterologously overexpressed in its active form not only from P. somniferum, but also from Papaver species that do not produce morphinan alkaloids. SalR is a member of a class of short chain dehydrogenase/reductases (SDRs) that are active as monomers and possess an extended amino acid sequence compared with classical SDRs. Homology modelling and substrate docking revealed the substrate binding site for SalR. The amino acids residues conferring salutaridine binding were compared to several members of the SDR family from different plant species, which non-specifically reduce (−)-menthone to (+)-neomenthol. Previously, it was shown that some of these proteins are involved in plant defence. The recruitment of specific monomeric SDRs from monomeric SDRs involved in plant defence is discussed.
Publikation

Pienkny, S.; Brandt, W.; Schmidt, J.; Kramell, R.; Ziegler, J.; Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L) Plant J. 60, 56-67, (2009) DOI: 10.1111/j.1365-313X.2009.03937.x

The benzylisoquinoline alkaloids are a highly diverse group of about 2500 compounds which accumulate in a species‐specific manner. Despite the numerous compounds which could be identified, the biosynthetic pathways and the participating enzymes or cDNAs could be characterized only for a few selected members, whereas the biosynthesis of the majority of the compounds is still largely unknown. In an attempt to characterize additional biosynthetic steps at the molecular level, integration of alkaloid and transcript profiling across Papaver species was performed. This analysis showed high expression of an expressed sequence tag (EST) of unknown function only in Papaver somniferum varieties. After full‐length cloning of the open reading frame and sequence analysis, this EST could be classified as a member of the class II type O ‐methyltransferase protein family. It was related to O ‐methyltransferases from benzylisoquinoline biosynthesis, and the amino acid sequence showed 68% identical residues to norcoclaurine 6‐O ‐methyltransferase. However, rather than methylating norcoclaurine, the recombinant protein methylated norreticuline at position seven with a K m of 44 μm using S ‐adenosyl‐l ‐methionine as a cofactor. Of all substrates tested, only norreticuline was converted. Even minor changes in the benzylisoquinoline backbone were not tolerated by the enzyme. Accordingly, the enzyme was named norreticuline 7–O ‐methyltransferase (N7OMT). This enzyme represents a novel O ‐methyltransferase in benzylisoquinoline metabolism. Expression analysis showed slightly increased expression of N7OMT in P. somniferum varieties containing papaverine, suggesting its involvement in the partially unknown biosynthesis of this pharmaceutically important compound.
IPB Mainnav Search