zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Preprints

Niemeyer, M.; Moreno Castillo, E.; Ihling, C. H.; Iacobucci, C.; Wilde, V.; Hellmuth, A.; Hoehenwarter, W.; Samodelov, S. L.; Zurbriggen, M. D.; Kastritis, P. L.; Sinz, A.; Calderón Villalobos, L. I. A.; Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin receptor assemblies bioRxiv (2019) DOI: 10.1101/787770

Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their ubiquitylation targets, AUX/IAAs, sense auxin concentrations in the nucleus. TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, we resolved TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron′s vicinity, cooperatively position AUX/IAAs on TIR1. The AUX/IAA PB1 interaction domain also assists in non-native contacts, affecting AUX/IAA dynamic interaction states. Our results establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation and might provide conformational flexibility for adopting a multiplicity of functional states. We postulate IDRs in distinct members of the AUX/IAA family to be an adaptive signature for protein interaction and initiation region for proteasome recruitment.
Publikation

Winkler, M.; Niemeyer, M.; Hellmuth, A.; Janitza, P.; Christ, G.; Samodelov, S. L.; Wilde, V.; Majovsky, P.; Trujillo, M.; Zurbriggen, M. D.; Hoehenwarter, W.; Quint, M.; Calderón Villalobos, L. I. A.; Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction Nat. Commun. 8, 15706, (2017) DOI: 10.1038/ncomms15706

Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.
Publikation

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 98, 1161-1162, (2017) DOI: 10.1099/jgv.0.000836

The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3–12.5 kb divided into 3–4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.
Publikation

Cenzano, A.; Vigliocc, A.; Miersch, O.; Abdala, G.; Hydroxylated jasmonate levels during stolon to tuber transition in Solarium tuberosum L Potato Res. 48, 107, (2005) DOI: 10.1007/BF02742370

Various octadecanoids and derived compounds have been identified in potato leaves. However, information regarding jasmonate hydroxylated forms in stolons or tubers is scarce. We investigated endogenous jasmonates in stolon material ofSolarium tuberosum cv. Spunta. Stolons and incipient tubers were collected from 8 weeks old plants. The material was cut into apical regions and stolons. We identified jasmonic acid (JA), methyl jasmonate, 11-OH-JA, 12-OH-JA, 12-oxo-phytodienoic acid (OPDA) and a conjugate. The content of JA and 12OH-JA decreased in the apical region but remained high in stolons during tuberization. Thus the apical region might be a site of JAs-utilization or metabolization and stolons might supply JAs to that region. The content of 12-OH-JA was higher than that of 11-OH-JA in all stages analyzed, both in apical regions and stolons. However, these compounds showed a different time-course in the apical region: while 11-OH-JA increased, 12-OH-JA decreased. Thus, JA from leaves or roots could be transported as 12-OH-JA to the apical region, stimulating tuber formation.
Publikation

Andrade, A.; Vigliocco, A.; Alemano, S.; Miersch, O.; Botella, M. A.; Abdala, G.; Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress Seed Sci. Res. 15, 309-318, (2005) DOI: 10.1079/SSR2005219

Although jasmonates (JAs) are involved in germination and seedling development, the regulatory mechanism of JAs, and their relation with endogenous level modifications in these processes, is not well understood. We report here the detection of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), 11-hydroxyjasmonate (11-OH-JA), 12-hydroxyjasmonate (12-OH-JA) and methyljasmonate (JAME) in unimbibed seeds and seedlings of tomato Lycopersicon esculentum Mill cv. Moneymaker (wild type) and tss1, tss2, tos1 mutants. The main compounds in wild-type and tss1, tss2, tos1 seeds were the hydroxylate-JAs; 12-OH-JA was the major component in dry seeds of the wild type and in tss2 and tos1. The amounts of these derivatives were higher in seeds than in seedlings. Changes in JAs during wild-type and tss1 imbibition were analysed in seeds and the imbibition water. In wild-type imbibed seeds, 11-OH-JA content was higher than in tss1. 12-OH-JA showed a different tendency with respect to 11-OH-JA, with high levels in the wild type at early imbibition. In tss1, levels of 12-OH-JA rose from 24 to 48 h of imbibition. At 72 h of imbibition, when radicles had emerged, the amounts of both hydroxylates in wild-type and tss1 seeds were minimal. An important release of the hydroxylate forms was observed in the imbibition water. 11-OH-JA decreased in the imbibition water of wild-type seeds at 48 h. On the contrary, a high and sustained liberation of this compound was observed in tss1 after 24 h. 12-OH-JA increased in wild-type as well in tss1 until 24 h. Thereafter, a substantial reduction in the content of this compound was registered. NaCl-treated wild-type seedlings increased their 12-OH-JA, but tss1 seedlings increased their JA in response to salt treatment. In tss2 seedlings, NaCl caused a slight decrease in 11-OH-JA and JAME, whereas tos1 seedlings showed a dramatic OPDA and 12-OH-JA decrease in response to salt treatment. Under salt stress the mutant seedlings showed different patterns of JAs according to their differential hypersensitivity to abiotic stress. The JA-hydroxylate forms found, and the differential accumulation of JAs during germination, imbibition and seedling development, as well as their response to NaCl stress, provide new evidence about the control of many developmental processes by JA.
Bücher und Buchkapitel

Vaira, A. M.; Acotto, G. P.; Gago-Zachert, S.; Garcia, M. L.; Grau, O.; Milne, R. G.; Morikawa, T.; Natsuaki, T.; Torov, V.; Verbeek, M.; Vetten, H. J.; Genus Ophiovirus 673-679, (2005) ISBN: 9780080575483 DOI: 10.1016/B978-0-12-249951-7.50014-6

0
IPB Mainnav Search