zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Den Herder, G.; Yoshida, S.; Antolín-Llovera, M.; Ried, M. K.; Parniske, M.; Lotus japonicus E3 Ligase SEVEN IN ABSENTIA4 Destabilizes the Symbiosis Receptor-Like Kinase SYMRK and Negatively Regulates Rhizobial Infection Plant Cell 24, 1691-1707, (2012) DOI: 10.1105/tpc.110.082248

The Lotus japonicus SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for symbiotic signal transduction upon stimulation of root cells by microbial signaling molecules. Here, we identified members of the SEVEN IN ABSENTIA (SINA) E3 ubiquitin-ligase family as SYMRK interactors and confirmed their predicted ubiquitin-ligase activity. In Nicotiana benthamiana leaves, SYMRK–yellow fluorescent protein was localized at the plasma membrane, and interaction with SINAs, as determined by bimolecular fluorescence complementation, was observed in small punctae at the cytosolic interface of the plasma membrane. Moreover, fluorescence-tagged SINA4 partially colocalized with SYMRK and caused SYMRK relocalization as well as disappearance of SYMRK from the plasma membrane. Neither the localization nor the abundance of Nod-factor receptor1 was altered by the presence of SINA4. SINA4 was transcriptionally upregulated during root symbiosis, and rhizobia inoculated roots ectopically expressing SINA4 showed reduced SYMRK protein levels. In accordance with a negative regulatory role in symbiosis, infection thread development was impaired upon ectopic expression of SINA4. Our results implicate SINA4 E3 ubiquitin ligase in the turnover of SYMRK and provide a conceptual mechanism for its symbiosis-appropriate spatio-temporal containment.
Publikation

Antolín-Llovera, M.; Ried, M. K.; Binder, A.; Parniske, M.; Receptor Kinase Signaling Pathways in Plant-Microbe Interactions Annu. Rev. Phytopathol. 50, 451-473, (2012) DOI: 10.1146/annurev-phyto-081211-173002

Plant receptor-like kinases (RLKs) function in diverse signaling pathways, including the responses to microbial signals in symbiosis and defense. This versatility is achieved with a common overall structure: an extracytoplasmic domain (ectodomain) and an intracellular protein kinase domain involved in downstream signal transduction. Various surfaces of the leucine-rich repeat (LRR) ectodomain superstructure are utilized for interaction with the cognate ligand in both plant and animal receptors. RLKs with lysin-motif (LysM) ectodomains confer recognitional specificity toward N-acetylglucosamine-containing signaling molecules, such as chitin, peptidoglycan (PGN), and rhizobial nodulation factor (NF), that induce immune or symbiotic responses. Signaling downstream of RLKs does not follow a single pattern; instead, the detailed analysis of brassinosteroid (BR) signaling, innate immunity, and symbiosis revealed at least three largely nonoverlapping pathways. In this review, we focus on RLKs involved in plant-microbe interactions and contrast the signaling pathways leading to symbiosis and defense.
Bücher und Buchkapitel

Vaira, A. M.; Gago-Zachert, S.; Garcia, M. L.; Guerri, J.; Hammond, J.; Milne, R. G.; Moreno, P.; Morikawa, T.; Natsuaki, T.; Navarro, J. A.; Pallas, V.; Torok, V.; Verbeek, M.; Vetten, H. J.; Family - Ophioviridae (King, A. M. Q., et al., eds.). 743-748, (2012) DOI: 10.1016/B978-0-12-384684-6.00060-4

This chapter focuses on Ophioviridae family whose sole member genus is Ophiovirus. The member species of the genus include Citrus psorosis virus (CPsV), Freesia sneak virus(FreSV), Lettuce ring necrosis virus (LRNV), and Mirafiori lettuce big-vein virus (MiLBVV).The single stranded negative/possibly ambisense RNA genome is divided into 3–4 segments, each of which is encapsidated in a single coat protein (43–50 kDa) forming filamentous virions of about 3 nm in diameter, in shape of kinked or probably internally coiled circles of at least two different contour lengths. Ophioviruses can be mechanically transmitted to a limited range of test plants, inducing local lesions and systemic mottle. The natural hosts of CPsV, ranunculus white mottle virus (RWMV), MiLBVV, and LRNV are dicotyledonous plants of widely differing taxonomy. CPsV has a wide geographical distribution in citrus in the Americas, in the Mediterranean and in New Zealand. FreSV has been reported in two species of the family Ranunculacae from Northern Italy, and in lettuce in France and Germany. Tulip mild mottle mosaic virus (TMMMV) has been reported in tulips in Japan. LRNV is closely associated with lettuce ring necrosis disease in The Netherlands, Belgium, and France, and FreSV has been reported in Europe, Africa, North America and New Zealand.
Publikation

Feussner, I.; Kühn, H.; Wasternack, C.; Lipoxygenase-dependent degradation of storage lipids Trends Plant Sci. 6, 268-273, (2001) DOI: 10.1016/S1360-1385(01)01950-1

Oilseed germination is characterized by the mobilization of storage lipids as a carbon source for the germinating seedling. In spite of the importance of lipid mobilization, its mechanism is only partially understood. Recent data suggest that a novel degradation mechanism is initiated by a 13-lipoxygenase during germination, using esterified fatty acids specifically as substrates. This 13-lipoxygenase reaction leads to a transient accumulation of ester lipid hydroperoxides in the storage lipids, and the corresponding oxygenated fatty acid moieties are preferentially removed by specific lipases. The free hydroperoxy fatty acids are subsequently reduced to their hydroxy derivatives, which might in turn undergo β-oxidation.
Publikation

BERGER, S.; Weichert, H.; Porzel, A.; Wasternack, C.; Kühn, H.; Feussner, I.; Enzymatic and non-enzymatic lipid peroxidation in leaf development BBA-Mol. Cell Biol. Lipids 1533, 266-276, (2001) DOI: 10.1016/S1388-1981(01)00161-5

Enzymatic and non-enzymatic lipid peroxidation has been implicated in programmed cell death, which is a major process of leaf senescence. To test this hypothesis we developed a high-performance liquid chromatography (HPLC) method for a simultaneous analysis of the major hydro(pero)xy polyenoic fatty acids. Quantities of lipid peroxidation products in leaves of different stages of development including natural senescence indicated a strong increase in the level of oxygenated polyenoic fatty acids (PUFAs) during the late stages of leaf senescence. Comprehensive structural elucidation of the oxygenation products by means of HPLC, gas chromatography/mass spectrometry and 1H nuclear magnetic resonance suggested a non-enzymatic origin. However, in some cases a small share of specifically oxidized PUFAs was identified suggesting involvement of lipid peroxidizing enzymes. To inspect the possible role of enzymatic lipid peroxidation in leaf senescence, we analyzed the abundance of lipoxygenases (LOXs) in rosette leaves of Arabidopsis. LOXs and their product (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid were exclusively detected in young green leaves. In contrast, in senescing leaves the specific LOX products were overlaid by large amounts of stereo-random lipid peroxidation products originating from non-enzymatic oxidation. These data indicate a limited contribution of LOXs to total lipid peroxidation, and a dominant role of non-enzymatic lipid peroxidation in late stages of leaf development.
Bücher und Buchkapitel

Abel, S.; Köck, M.; Secretory Acid Ribonucleases from Tomato, Lycopersicon esculentum Mill. Methods Enzymol. 341, 351-368, (2001) DOI: 10.1016/S0076-6879(01)41163-3

0
IPB Mainnav Search