zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 12.

Publikation

Ried, M. K.; Banhara, A.; Hwu, F.-Y.; Binder, A.; Gust, A. A.; Höfle, C.; Hückelhoven, R.; Nürnberger, T.; Parniske, M.; A set of Arabidopsis genes involved in the accommodation of the downy mildew pathogen Hyaloperonospora arabidopsidis PLOS Pathog. 15, e1007747, (2019) DOI: 10.1371/journal.ppat.1007747

The intracellular accommodation structures formed by plant cells to host arbuscular mycorrhiza fungi and biotrophic hyphal pathogens are cytologically similar. Therefore we investigated whether these interactions build on an overlapping genetic framework. In legumes, the malectin-like domain leucine-rich repeat receptor kinase SYMRK, the cation channel POLLUX and members of the nuclear pore NUP107-160 subcomplex are essential for symbiotic signal transduction and arbuscular mycorrhiza development. We identified members of these three groups in Arabidopsis thaliana and explored their impact on the interaction with the oomycete downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). We report that mutations in the corresponding genes reduced the reproductive success of Hpa as determined by sporangiophore and spore counts. We discovered that a developmental transition of haustorial shape occurred significantly earlier and at higher frequency in the mutants. Analysis of the multiplication of extracellular bacterial pathogens, Hpa-induced cell death or callose accumulation, as well as Hpa- or flg22-induced defence marker gene expression, did not reveal any traces of constitutive or exacerbated defence responses. These findings point towards an overlap between the plant genetic toolboxes involved in the interaction with biotrophic intracellular hyphal symbionts and pathogens in terms of the gene families involved.
Publikation

Girardin, A.; Wang, T.; Ding, Y.; Keller, J.; Buendia, L.; Gaston, M.; Ribeyre, C.; Gasciolli, V.; Auriac, M.-C.; Vernié, T.; Bendahmane, A.; Ried, M. K.; Parniske, M.; Morel, P.; Vandenbussche, M.; Schorderet, M.; Reinhardt, D.; Delaux, P.-M.; Bono, J.-J.; Lefebvre, B.; LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes Curr. Biol. 29, 4249-4259.e5, (2019) DOI: 10.1016/j.cub.2019.11.038

Bacterial lipo-chitooligosaccharides (LCOs) are key mediators of the nitrogen-fixing root nodule symbiosis (RNS) in legumes. The isolation of LCOs from arbuscular mycorrhizal fungi suggested that LCOs are also signaling molecules in arbuscular mycorrhiza (AM). However, the corresponding plant receptors have remained uncharacterized. Here we show that petunia and tomato mutants in the LysM receptor-like kinases LYK10 are impaired in AM formation. Petunia and tomato LYK10 proteins have a high affinity for LCOs (Kd in the nM range) comparable to that previously reported for a legume LCO receptor essential for the RNS. Interestingly, the tomato and petunia LYK10 promoters, when introduced into a legume, were active in nodules similarly to the promoter of the legume orthologous gene. Moreover, tomato and petunia LYK10 coding sequences restored nodulation in legumes mutated in their orthologs. This combination of genetic and biochemical data clearly pinpoints Solanaceous LYK10 as part of an ancestral LCO perception system involved in AM establishment, which has been directly recruited during evolution of the RNS in legumes.
Bücher und Buchkapitel

Parniske, M.; Ried, M. K.; Wahrnehmung und Interpretation symbiontischer Signale durch Pflanzen und ihre bakteriellen Partner (Deigele, C., ed.). 105-116, (2016)

Mutualistic symbioses between plant roots and microorganisms can reduce the demand for chemical fertilizers in agriculture. Most crops are able to establish arbuscular mycorrhiza (AM) symbiosis with fungi to take up phosphate more efficiently. A second symbiosis, nitrogen-fixing root nodule symbiosis, supersedes energy-intensive nitrogen fertilization: Legumes such as peas, clover and soybeans take up rhizobia – special bacteria that are capable of converting atmospheric nitrogen into ammonium – into their root cells. Plant root cells perceive rhizobia and AM fungi via very similar signaling molecules (N-acetylglucosamine tetra- or pentamers), even though the resultant developmental processes differ strongly. Interestingly, N-acetylglucosamine containing signals including fungal chitin- and bacterial peptidoglycan-fragments from their cell walls, also play a role in the recognition of pathogenic microorganisms.Despite the intrinsic sustainability potential of the nitrogen-fixing root nodule symbiosis, too much of a good thing, however, has led to global problems: The massive increase in global meat production is largely based on soybean. Large scale soybean monoculture destroyed ecosystems in South America. Large scale animal production results in excessive methane and nitrogen release into the environment, which causes climate change and death zones in marine ecosystems, respectively. This calls for a considerable reduction in meat consumption.
Publikation

Ried, M. K.; Antolín-Llovera, M.; Parniske, M.; Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases eLife 3, e03891, (2014) DOI: 10.7554/eLife.03891

Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.
Publikation

Antolín-Llovera, M.; Petutsching, E. K.; Ried, M. K.; Lipka, V.; Nürnberger, T.; Robatzek, S.; Parniske, M.; Knowing your friends and foes - plant receptor-like kinases as initiators of symbiosis or defence New Phytol. 204, 791-802, (2014) DOI: 10.1111/nph.13117

The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane‐localized receptor complexes. A critical step in their activation is ligand‐induced homo‐ or hetero‐oligomerization of leucine‐rich repeat (LRR)‐ and/or lysin motif (LysM) receptor‐like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen‐associated molecular patterns (PAMPs), including the bacterial flagellin‐derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont‐derived (lipo)‐chitooligosaccharides. The structurally related chitin‐oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM‐RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin‐like domain (MLD)‐LRR‐RLK Symbiosis Receptor‐like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR‐ and LysM‐mediated signalling, the involvement of MLD‐LRR‐RLKs in symbiosis and defence, and the role of endocytosis in RLK function.
Publikation

Antolín-Llovera, M.; Ried, M. K.; Parniske, M.; Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE Ectodomain Promotes Complex Formation with Nod Factor Receptor 5 Curr. Biol. 24, 422-427, (2014) DOI: 10.1016/j.cub.2013.12.053

Plants form root symbioses with fungi and bacteria to improve their nutrient supply. SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for phosphate-acquiring arbuscular mycorrhiza, as well as for the nitrogen-fixing root nodule symbiosis of legumes [1] and actinorhizal plants [2, 3], but its precise function was completely unclear. Here we show that the extracytoplasmic region of SYMRK, which comprises three leucine-rich repeats (LRRs) and a malectin-like domain (MLD) related to a carbohydrate-binding protein from Xenopus laevis [4], is cleaved to release the MLD in the absence of symbiotic stimulation. A conserved sequence motif—GDPC—that connects the MLD to the LRRs is required for MLD release. We discovered that Nod factor receptor 5 (NFR5) [5, 6, 7, 8] forms a complex with the SYMRK version that remains after MLD release (SYMRK-ΔMLD). SYMRK-ΔMLD outcompeted full-length SYMRK for NFR5 interaction, indicating that the MLD negatively interferes with complex formation. SYMRK-ΔMLD is present at lower amounts than MLD, suggesting rapid degradation after MLD release. A deletion of the entire extracytoplasmic region increased protein abundance, suggesting that the LRR region promotes degradation. Curiously, this deletion led to excessive infection thread formation, highlighting the importance of fine-tuned regulation of SYMRK by its ectodomain.
Publikation

Den Herder, G.; Yoshida, S.; Antolín-Llovera, M.; Ried, M. K.; Parniske, M.; Lotus japonicus E3 Ligase SEVEN IN ABSENTIA4 Destabilizes the Symbiosis Receptor-Like Kinase SYMRK and Negatively Regulates Rhizobial Infection Plant Cell 24, 1691-1707, (2012) DOI: 10.1105/tpc.110.082248

The Lotus japonicus SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for symbiotic signal transduction upon stimulation of root cells by microbial signaling molecules. Here, we identified members of the SEVEN IN ABSENTIA (SINA) E3 ubiquitin-ligase family as SYMRK interactors and confirmed their predicted ubiquitin-ligase activity. In Nicotiana benthamiana leaves, SYMRK–yellow fluorescent protein was localized at the plasma membrane, and interaction with SINAs, as determined by bimolecular fluorescence complementation, was observed in small punctae at the cytosolic interface of the plasma membrane. Moreover, fluorescence-tagged SINA4 partially colocalized with SYMRK and caused SYMRK relocalization as well as disappearance of SYMRK from the plasma membrane. Neither the localization nor the abundance of Nod-factor receptor1 was altered by the presence of SINA4. SINA4 was transcriptionally upregulated during root symbiosis, and rhizobia inoculated roots ectopically expressing SINA4 showed reduced SYMRK protein levels. In accordance with a negative regulatory role in symbiosis, infection thread development was impaired upon ectopic expression of SINA4. Our results implicate SINA4 E3 ubiquitin ligase in the turnover of SYMRK and provide a conceptual mechanism for its symbiosis-appropriate spatio-temporal containment.
Publikation

Antolín-Llovera, M.; Ried, M. K.; Binder, A.; Parniske, M.; Receptor Kinase Signaling Pathways in Plant-Microbe Interactions Annu. Rev. Phytopathol. 50, 451-473, (2012) DOI: 10.1146/annurev-phyto-081211-173002

Plant receptor-like kinases (RLKs) function in diverse signaling pathways, including the responses to microbial signals in symbiosis and defense. This versatility is achieved with a common overall structure: an extracytoplasmic domain (ectodomain) and an intracellular protein kinase domain involved in downstream signal transduction. Various surfaces of the leucine-rich repeat (LRR) ectodomain superstructure are utilized for interaction with the cognate ligand in both plant and animal receptors. RLKs with lysin-motif (LysM) ectodomains confer recognitional specificity toward N-acetylglucosamine-containing signaling molecules, such as chitin, peptidoglycan (PGN), and rhizobial nodulation factor (NF), that induce immune or symbiotic responses. Signaling downstream of RLKs does not follow a single pattern; instead, the detailed analysis of brassinosteroid (BR) signaling, innate immunity, and symbiosis revealed at least three largely nonoverlapping pathways. In this review, we focus on RLKs involved in plant-microbe interactions and contrast the signaling pathways leading to symbiosis and defense.
Publikation

Vigliocco, A.; Alemano, S.; Miersch, O.; Alvarez, D.; Abdala, G.; Endogenous jasmonates in dry and imbibed sunflower seeds from plants grown at different soil moisture contents Seed Sci. Res. 17, 91-98, (2007) DOI: 10.1017/S0960258507708371

In this study, we characterized two sunflower (Helianthus annuus L.) lines with differential sensitivity to drought, the sensitive line B59 and the tolerant line B71. Using both lines, we compared the content of endogenous jasmonates (JAs) in dry and imbibed seeds from plants grown under irrigation and drought. Jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), 11-hydroxyjasmonate (11-OH-JA) and 12-hydroxyjasmonate (12-OH-JA) were detected in dry and imbibed sunflower seeds. Seeds from plants grown under drought had a lower content of total JAs and exhibited higher germination percentages than seeds from irrigated plants, demonstrating that environmental conditions have a strong influence on the progeny. OPDA and 12-OH-JA were the main compounds found in dry seeds of both lines. Imbibed seeds showed an enhanced amount of total JAs with respect to dry seeds produced by plants grown in both soil moisture conditions. Imbibition triggered a dramatic OPDA increase in the embryo, suggesting a role of this compound in germination. We conclude that JAs patterns vary during sunflower germination and that the environmental conditions experienced by the mother plant modify the hormonal content of the seed progeny.
Publikation

Andrade, A.; Vigliocco, A.; Alemano, S.; Miersch, O.; Botella, M. A.; Abdala, G.; Endogenous jasmonates and octadecanoids in hypersensitive tomato mutants during germination and seedling development in response to abiotic stress Seed Sci. Res. 15, 309-318, (2005) DOI: 10.1079/SSR2005219

Although jasmonates (JAs) are involved in germination and seedling development, the regulatory mechanism of JAs, and their relation with endogenous level modifications in these processes, is not well understood. We report here the detection of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), 11-hydroxyjasmonate (11-OH-JA), 12-hydroxyjasmonate (12-OH-JA) and methyljasmonate (JAME) in unimbibed seeds and seedlings of tomato Lycopersicon esculentum Mill cv. Moneymaker (wild type) and tss1, tss2, tos1 mutants. The main compounds in wild-type and tss1, tss2, tos1 seeds were the hydroxylate-JAs; 12-OH-JA was the major component in dry seeds of the wild type and in tss2 and tos1. The amounts of these derivatives were higher in seeds than in seedlings. Changes in JAs during wild-type and tss1 imbibition were analysed in seeds and the imbibition water. In wild-type imbibed seeds, 11-OH-JA content was higher than in tss1. 12-OH-JA showed a different tendency with respect to 11-OH-JA, with high levels in the wild type at early imbibition. In tss1, levels of 12-OH-JA rose from 24 to 48 h of imbibition. At 72 h of imbibition, when radicles had emerged, the amounts of both hydroxylates in wild-type and tss1 seeds were minimal. An important release of the hydroxylate forms was observed in the imbibition water. 11-OH-JA decreased in the imbibition water of wild-type seeds at 48 h. On the contrary, a high and sustained liberation of this compound was observed in tss1 after 24 h. 12-OH-JA increased in wild-type as well in tss1 until 24 h. Thereafter, a substantial reduction in the content of this compound was registered. NaCl-treated wild-type seedlings increased their 12-OH-JA, but tss1 seedlings increased their JA in response to salt treatment. In tss2 seedlings, NaCl caused a slight decrease in 11-OH-JA and JAME, whereas tos1 seedlings showed a dramatic OPDA and 12-OH-JA decrease in response to salt treatment. Under salt stress the mutant seedlings showed different patterns of JAs according to their differential hypersensitivity to abiotic stress. The JA-hydroxylate forms found, and the differential accumulation of JAs during germination, imbibition and seedling development, as well as their response to NaCl stress, provide new evidence about the control of many developmental processes by JA.
IPB Mainnav Search