zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Köck, M.; Groß, N.; Stenzel, I.; Hause, G.; Phloem-specific expression of the wound-inducible ribonuclease LE from tomato (Lycopersicon esculentum cv. Lukullus) Planta 219, 233-242, (2004) DOI: 10.1007/s00425-004-1227-4

Ribonuclease LE (RNaseLE) from tomato (Lycopersicon esculentum Mill. cv. Lukullus) belongs to the widespread RNase T2 family of ribonucleases. With the exception of S-RNases of the solanaceous self-incompatibility system the functions of other members of the RNase T2 family are only barely understood. Using a 2.6-kbp putative promoter sequence of RNaseLE in front of the uidA reporter gene, expression of β-glucuronidase in developing phloem tissue and, especially, in the meristematic and elongation zones at root tips was detected. The tissue-specific expression accords with the range of cis-acting elements detected in the RNaseLE promoter. RNaseLE mRNA was localized in developing phloem cells but not in mature phloem tissue, suggesting association of RNaseLE expression with phloem development. Histochemical staining of β-glucuronidase activity as well as detailed inspection of RNaseLE at mRNA, protein and enzyme activity levels revealed that the wound-induced expression of RNaseLE was also restricted to vascular tissue. RNaseLE transcript accumulation detected by in situ hybridization occurred preferentially in phloem and cambial cells of stem sections upon wounding. The data provide evidence for a role of RNaseLE in a tissue-specific wound response and in wound healing of tomato.
Publikation

Weichert, H.; Kolbe, A.; Kraus, A.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins in germinating cucumber seedlings - lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes Planta 215, 612-619, (2002) DOI: 10.1007/s00425-002-0779-4

A particular isoform of lipoxygenase (LOX) localized on lipid bodies was shown by earlier investigations to play a role in initiating the mobilization of triacylglycerols during seed germination. Here, further physiological functions of LOXs within whole cotyledons of cucumber (Cucumis sativus L.) were analyzed by measuring the endogenous amounts of LOX-derived products. The lipid-body LOX-derived esterified (13S)-hydroperoxy linoleic acid was the dominant metabolite of the LOX pathway in this tissue. It accumulated to about 14 µmol/g fresh weight, which represented about 6% of the total amount of linoleic acid in cotyledons. This LOX product was not only reduced to its hydroxy derivative, leading to degradation by β-oxidation, but alternatively it was metabolized by fatty acid hydroperoxide lyase leading to formation of hexanal as well. Furthermore, the activities of LOX forms metabolizing linolenic acid were detected by measuring the accumulation of volatile aldehydes and the allene oxide synthase-derived metabolite jasmonic acid. The first evidence is presented for an involvement of a lipid-body LOX form in the production of volatile aldehydes.
IPB Mainnav Search