zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 48.

Publikation

Montpetit, J.; Clúa, J.; Hsieh, Y.-F.; Vogiatzaki, E.; Müller, J.; Abel, S.; Strasser, R.; Poirier, Y.; Endoplasmic reticulum calnexins participate in the primary root growth response to phosphate deficiency Plant Physiol. 191, 1719-1733, (2023) DOI: 10.1093/plphys/kiac595

Accumulation of incompletely folded proteins in the endoplasmic reticulum (ER) leads to ER stress, activates ER protein degradation pathways, and upregulates genes involved in protein folding. This process is known as the unfolded protein response (UPR). The role of ER protein folding in plant responses to nutrient deficiencies is unclear. We analyzed Arabidopsis (Arabidopsis thaliana) mutants affected in ER protein quality control and established that both CALNEXIN (CNX) genes function in the primary root’s response to phosphate (Pi) deficiency. CNX1 and CNX2 are homologous ER lectins promoting protein folding of N-glycosylated proteins via the recognition of the GlcMan9GlcNAc2 glycan. Growth of cnx1-1 and cnx2-2 single mutants was similar to that of the wild type under high and low Pi conditions, but the cnx1-1 cnx2-2 double mutant showed decreased primary root growth under low Pi conditions due to reduced meristematic cell division. This phenotype was specific to Pi deficiency; the double mutant responded normally to osmotic and salt stress. Expression of CNX2 mutated in amino acids involved in binding the GlcMan9GlcNAc2 glycan failed to complement the cnx1-1 cnx2-2 mutant. The root growth phenotype was Fe dependent and was associated with root apoplastic Fe accumulation. Two genes involved in Fe-dependent inhibition of primary root growth under Pi deficiency, the ferroxidase LOW PHOSPHATE 1 (LPR1) and P5-type ATPase PLEIOTROPIC DRUG RESISTANCE 2 (PDR2) were epistatic to CNX1/CNX2. Overexpressing PDR2 failed to complement the cnx1-1 cnx2-2 root phenotype. The cnx1-1 cnx2-2 mutant showed no evidence of UPR activation, indicating a limited effect on ER protein folding. CNX might process a set of N-glycosylated proteins specifically involved in the response to Pi deficiency.
Publikation

Meena, S. K.; Heidecker, M.; Engelmann, S.; Jaber, A.; de Vries, T.; Triller, S.; Baumann‐Kaschig, K.; Abel, S.; Behrens, S.; Gago-Zachert, S.; Altered expression levels of long noncoding natural antisense transcripts overlapping the UGT73C6 gene affect rosette size in Arabidopsis thaliana Plant J. 113, 460-477, (2023) DOI: 10.1111/tpj.16058

Natural antisense long noncoding RNAs (lncNATs) are involved in the regulation of gene expression in plants, modulating different relevant developmental processes and responses to various stimuli. We have identified and characterized two lncNATs (NAT1UGT73C6 and NAT2UGT73C6, collectively NATsUGT73C6) from Arabidopsis thaliana that are transcribed from gene fully overlapping UGT73C6, a member of the UGT73C subfamily of genes encoding UDP-glycosyltransferases (UGTs). Expression of both NATsUGT73C6 is developmentally controlled and occurs independently of the transcription of UGT73C6 in cis. Downregulation of NATsUGT73C6 levels through artificial microRNAs results in a reduction of the rosette area, while constitutive overexpression of NAT1UGT73C6 or NAT2UGT73C6 leads to the opposite phenotype, an increase in rosette size. This activity of NATsUGT73C6 relies on its RNA sequence, and, although modulation of UGT73C6 in cis cannot be excluded, the observed phenotypes are not a consequence of the regulation of UGT73C6 in trans. The NATsUGT73C6 levels were shown to affect cell proliferation and thus individual leaf size. Consistent with this concept, our data suggest that the NATsUGT73C6 influence the expression levels of key transcription factors involved in regulating leaf growth by modulating cell proliferation. These findings thus reveal an additional regulatory layer on the process of leaf growth.
Publikation

Kuhn, J. H.; Adkins, S.; Alioto, D.; Gago-Zachert, S.; et al., .; 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Arch. Virol. 165, 3023–3072, (2020) DOI: 10.1007/s00705-020-04731-2

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Publikation

Serra, P.; Carbonell, A.; Navarro, B.; Gago-Zachert, S.; Li, S.; Di Serio, F.; Flores, R.; Symptomatic plant viroid infections in phytopathogenic fungi: A request for a critical reassessment Proc. Natl. Acad. Sci. U.S.A. 117, 10126-10128, (2020) DOI: 10.1073/pnas.1922249117

0
Publikation

Gago-Zachert, S.; Schuck, J.; Weinholdt, C.; Knoblich, M.; Pantaleo, V.; Grosse, I.; Gursinsky, T.; Behrens, S.-E.; Highly efficacious antiviral protection of plants by small interfering RNAs identified in vitro Nucleic Acids Res. 47, 9343-9357, (2019) DOI: 10.1093/nar/gkz678

In response to a viral infection, the plant’s RNA silencing machinery processes viral RNAs into a huge number of small interfering RNAs (siRNAs). However, a very few of these siRNAs actually interfere with viral replication. A reliable approach to identify these immunologically effective siRNAs (esiRNAs) and to define the characteristics underlying their activity has not been available so far. Here, we develop a novel screening approach that enables a rapid functional identification of antiviral esiRNAs. Tests on the efficacy of such identified esiRNAs of a model virus achieved a virtual full protection of plants against a massive subsequent infection in transient applications. We find that the functionality of esiRNAs depends crucially on two properties: the binding affinity to Argonaute proteins and the ability to access the target RNA. The ability to rapidly identify functional esiRNAs could be of great benefit for all RNA silencing-based plant protection measures against viruses and other pathogens.
Publikation

Naumann, C.; Müller, J.; Sakhonwasee, S.; Wieghaus, A.; Hause, G.; Heisters, M.; Bürstenbinder, K.; Abel, S.; The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy Plant Physiol. 179, 460-476, (2019) DOI: 10.1104/pp.18.01379

Inorganic phosphate (Pi) is often a limiting plant nutrient. In members of the Brassicaceae family, such as Arabidopsis (Arabidopsis thaliana), Pi deprivation reshapes root system architecture to favor topsoil foraging. It does so by inhibiting primary root extension and stimulating lateral root formation. Root growth inhibition from phosphate (Pi) deficiency is triggered by iron-stimulated, apoplastic reactive oxygen species generation and cell wall modifications, which impair cell-to-cell communication and meristem maintenance. These processes require LOW PHOSPHATE RESPONSE1 (LPR1), a cell wall-targeted ferroxidase, and PHOSPHATE DEFICIENCY RESPONSE2 (PDR2), the single endoplasmic reticulum (ER)-resident P5-type ATPase (AtP5A), which is thought to control LPR1 secretion or activity. Autophagy is a conserved process involving the vacuolar degradation of cellular components. While the function of autophagy is well established under nutrient starvation (C, N, or S), it remains to be explored under Pi deprivation. Because AtP5A/PDR2 likely functions in the ER stress response, we analyzed the effect of Pi limitation on autophagy. Our comparative study of mutants defective in the local Pi deficiency response, ER stress response, and autophagy demonstrated that ER stress-dependent autophagy is rapidly activated as part of the developmental root response to Pi limitation and requires the genetic PDR2-LPR1 module. We conclude that Pi-dependent activation of autophagy in the root apex is a consequence of local Pi sensing and the associated ER stress response, rather than a means for systemic recycling of the macronutrient.
Publikation

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; Corrigendum: ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 99, 949-949, (2018) DOI: 10.1099/jgv.0.001093

0
Publikation

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 98, 1161-1162, (2017) DOI: 10.1099/jgv.0.000836

The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3–12.5 kb divided into 3–4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.
Publikation

Balzergue, C.; Dartevelle, T.; Godon, C.; Laugier, E.; Meisrimler, C.; Teulon, J.-M.; Creff, A.; Bissler, M.; Brouchoud, C.; Hagège, A.; Müller, J.; Chiarenza, S.; Javot, H.; Becuwe-Linka, N.; David, P.; Péret, B.; Delannoy, E.; Thibaud, M.-C.; Armengaud, J.; Abel, S.; Pellequer, J.-L.; Nussaume, L.; Desnos, T.; Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation Nat. Commun. 8, 15300, (2017) DOI: 10.1038/ncomms15300

Environmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1–ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion.
Publikation

López-Carrasco, A.; Ballesteros, C.; Sentandreu, V.; Delgado, S.; Gago-Zachert, S.; Flores, R.; Sanjuán, R.; Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing PLOS Pathog. 13, e1006547, (2017) DOI: 10.1371/journal.ppat.1006547

Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-replicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.
IPB Mainnav Search