zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Quint, M.; Drost, H.-G.; Gabel, A.; Ullrich, K. K.; Bönn, M.; Grosse, I.; A transcriptomic hourglass in plant embryogenesis Nature 490, 98-101, (2012) DOI: 10.1038/nature11394

Animal and plant development starts with a constituting phase called embryogenesis, which evolved independently in both lineages1. Comparative anatomy of vertebrate development—based on the Meckel-Serrès law2 and von Baer’s laws of embryology3 from the early nineteenth century—shows that embryos from various taxa appear different in early stages, converge to a similar form during mid-embryogenesis, and again diverge in later stages. This morphogenetic series is known as the embryonic ‘hourglass’4,5, and its bottleneck of high conservation in mid-embryogenesis is referred to as the phylotypic stage6. Recent analyses in zebrafish and Drosophila embryos provided convincing molecular support for the hourglass model, because during the phylotypic stage the transcriptome was dominated by ancient genes7 and global gene expression profiles were reported to be most conserved8. Although extensively explored in animals, an embryonic hourglass has not been reported in plants, which represent the second major kingdom in the tree of life that evolved embryogenesis. Here we provide phylotranscriptomic evidence for a molecular embryonic hourglass in Arabidopsis thaliana, using two complementary approaches. This is particularly significant because the possible absence of an hourglass based on morphological features in plants suggests that morphological and molecular patterns might be uncoupled. Together with the reported developmental hourglass patterns in animals, these findings indicate convergent evolution of the molecular hourglass and a conserved logic of embryogenesis across kingdoms.
Publikation

Monostori, T.; Schulze, J.; Sharma, V. K.; Maucher, H.; Wasternack, C.; Hause, B.; Novel plasmid vectors for homologous transformation of barley (Hordeum vulgare L.) with JIP23 cDNA in sense and antisense orientation Cereal Res. Commun. 31, 17-24, (2003) DOI: 10.1007/BF03543245

The most abundant jasmonate-induced protein (JIP) in barley leaves is a 23 kDa protein (JIP23). Its function, however, is unknown. In order to analyze its function by homologous transformation, new plasmid vectors have been constructed. They carry the cDNA coding for JIP23 in sense or antisense orientation under the control of the Ubi-1-promoter as well as the pat resistance gene under the control of the 35S promoter. Barley mesophyll protoplasts were transiently transformed with the sense constructs. PAT activity and immunological detection of JIP23 could be achieved in transformed protoplasts but not in untransformed protoplasts indicating that the construct was active. Thus, these new vectors are suitable for stable transformation of barley. Carrying a multiple cloning site (MCS), these vectors can be used now in a wide range of transformation of barley.
IPB Mainnav Search