zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 8 von 8.

Publikation

Bochnia, M.; Ziegler, J.; Sander, J.; Uhlig, A.; Schaefer, S.; Vollstedt, S.; Glatter, M.; Abel, S.; Recknagel, S.; Schusser, G. F.; Wensch-Dorendorf, M.; Zeyner, A.; Hypoglycin A Content in Blood and Urine Discriminates Horses with Atypical Myopathy from Clinically Normal Horses Grazing on the Same Pasture PLOS ONE 10, e0136785, (2015) DOI: 10.1371/journal.pone.0136785

Hypoglycin A (HGA) in seeds of Acer spp. is suspected to cause seasonal pasture myopathy in North America and equine atypical myopathy (AM) in Europe, fatal diseases in horses on pasture. In previous studies, this suspicion was substantiated by the correlation of seed HGA content with the concentrations of toxic metabolites in urine and serum (MCPA-conjugates) of affected horses. However, seed sampling was conducted after rather than during an outbreak of the disease. The aim of this study was to further confirm the causality between HGA occurrence and disease outbreak by seed sampling during an outbreak and the determination of i) HGA in seeds and of ii) HGA and MCPA-conjugates in urine and serum of diseased horses. Furthermore, cograzing healthy horses, which were present on AM affected pastures, were also investigated. AM-pastures in Germany were visited to identify seeds of Acer pseudoplatanus and serum (n = 8) as well as urine (n = 6) from a total of 16 diseased horses were analyzed for amino acid composition by LC-ESI-MS/MS, with a special focus on the content of HGA. Additionally, the content of its toxic metabolite was measured in its conjugated form in body fluids (UPLC-MS/MS). The seeds contained 1.7–319.8 μg HGA/g seed. The content of HGA in serum of affected horses ranged from 387.8–8493.8 μg/L (controls < 10 μg/L), and in urine from 143.8–926.4 μg/L (controls < 10 μg/L), respectively. Healthy cograzing horses on AM-pastures showed higher serum (108.8 ± 83.76 μg/L) and urine concentrations (26.9 ± 7.39 μg/L) compared to control horses, but lower concentrations compared to diseased horses. The range of MCPA-carnitine and creatinine concentrations found in diseased horses in serum and urine were 0.17–0.65 mmol/L (controls < 0.01), and 0.34–2.05 μmol/mmoL (controls < 0.001), respectively. MCPA-glycine levels in urine of cograzing horses were higher compared to controls. Thus, the causal link between HGA intoxication and disease outbreak could be further substantiated, and the early detection of HGA in cograzing horses, which are clinically normal, might be a promising step in prophylaxis.
Publikation

Raschke, A.; Ibañez, C.; Ullrich, K. K.; Anwer, M. U.; Becker, S.; Glöckner, A.; Trenner, J.; Denk, K.; Saal, B.; Sun, X.; Ni, M.; Davis, S. J.; Delker, C.; Quint, M.; Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes BMC Plant Biol. 15, 197, (2015) DOI: 10.1186/s12870-015-0566-6

BackgroundPerception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis.ResultsWe identified GIRAFFE2.1, a major QTL explaining ~18 % of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth.ConclusionsIn combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod information to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation.
Preprints

Raschke, A.; Ibañez, C.; Ullrich, K. K.; Anwer, M. U.; Becker, S.; Glöckner, A.; Trenner, J.; Denk, K.; Saal, B.; Sun, X.; Ni, M.; Davis, S. J.; Delker, C.; Quint, M.; Natural Variants of ELF3 Affect Thermomorphogenesis by Transcriptionally Modulating PIF4-Dependent Auxin Response Genes bioRxiv (2015) DOI: 10.1101/015305

Perception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis. We identified GIRAFFE2.1, a major QTL explaining ~18% of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth. In combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod cues to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation.
Preprints

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C.; Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana bioRxiv (2015) DOI: 10.1101/017285

Background Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.Results Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.Conclusion Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Publikation

Flores, R.; Navarro, B.; Gago, S.; De la Peña, M.; Chrysanthemum Chlorotic Mottle Viroid: a System for Reverse Genetics in the Family Avsunviroidae (Hammerhead Viroids) Plant Viruses 1, 27-32, (2007)

Viroids are small single-stranded circular RNAs able to infect plants. Chrysanthemum chlorotic mottle was one of the first viroid diseases reported, but identification and characterization of the causing RNA was delayed by its low accumulation in vivo. Chrysanthemum chlorotic mottle viroid (CChMVd) (398-401 nt) adopts a branched conformation instead of the rod-like secondary structure characteristic of most viroids. The natural sequence variability and the effects of artificial mutants support that the branched conformation is physiologically relevant and additionally stabilized by a kissing-loop interaction critical for RNA in vitro folding and in vivo viability. CChMVd shares structural similarities with peach latent mosaic viroid, with which forms the genus Pelamoviroid within the family Avsunviroidae. CChMVd adopts hammerhead structures that catalyze self-cleavage of the oligomeric strands of both polarities resulting from replication through a symmetric rolling-circle mechanism. The two CChMVd hammerheads display peculiarities: the plus has an extra A close to the central conserved core, and the minus an unsually long helix II. There are non-symptomatic strains (CChMVd-NS) that protect against challenge inoculation with severe strains (CChMVd-S). Introduction by site-directed mutagenesis of one of the CChMVd-NS specific mutations (UUUC?GAAA) is sufficient to change the symptomatic phenotype into non-symptomatic without altering the viroid titer. This pathogenicity determinant maps at a tetraloop of the CChMVd branched conformation. Co-inoculations with typical CChMVd-S and -NS variants showed that the infected plants remain symptomless only when the latter was in more than a 100-fold excess, indicating the higher fitness of the S variant. RNA silencing could mediate the observed cross-protection.
Publikation

Eschen-Lippold, L.; Rothe, G.; Stumpe, M.; Göbel, C.; Feussner, I.; Rosahl, S.; Reduction of divinyl ether-containing polyunsaturated fatty acids in transgenic potato plants Phytochemistry 68, 797-801, (2007) DOI: 10.1016/j.phytochem.2006.12.010

Oxygenated polyunsaturated fatty acids synthesized via the lipoxygenase pathway play a role in plant responses to pathogen attack. In solanaceous plants, the preferential stimulation of the 9-lipoxygenase pathway in response to pathogen infection leads to the formation of the divinyl ether-containing polyunsaturated fatty acids colneleic and colnelenic acid, as well as hydroxy and trihydroxy polyunsaturated fatty acids. To functionally assess the role of divinyl ethers, transgenic potato plants were generated which express an RNA interference construct directed against the pathogen-inducible 9-divinyl ether synthase. Efficient reduction of 9-divinyl ether synthase transcript accumulation correlated with reduced levels of colneleic and colnelenic acid. However, in response to infection with virulent Phytophthora infestans, the causal agent of late blight disease, no significant differences in pathogen biomass could be detected suggesting that the levels of antimicrobial divinyl ethers are not critical for defense against Phytophthora infestans in a compatible interaction.
Bücher und Buchkapitel

Flores, R.; Carbonell, A.; De la Peña, M.; Gago, S.; RNAs Autocatalíticos: Ribozimas de Cabeza de Martillo 407-425, (2007)

0
Publikation

Carbonell, A.; De la Peña, M.; Flores, R.; Gago, S.; Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads Nucleic Acids Res. 34, 5613-5622, (2006) DOI: 10.1093/nar/gkl717

Eggplant latent viroid (ELVd) can form stable hammerhead structures in its (+) and (−) strands. These ribozymes have the longest helices I reported in natural hammerheads, with that of the ELVd (+) hammerhead being particularly stable (5/7 bp are G-C). Moreover, the trinucleotide preceding the self-cleavage site of this hammerhead is AUA, which together with GUA also found in some natural hammerheads, deviate from the GUC present in most natural hammerheads including the ELVd (−) hammerhead. When the AUA trinucleotide preceding the self-cleavage site of the ELVd (+) hammerhead was substituted by GUA and GUC, as well as by AUC (essentially absent in natural hammerheads), the values of the self-cleavage rate constants at low magnesium of the purified hammerheads were: ELVd-(+)-AUC≈ELVd-(+)-GUC>ELVd-(+)-GUA> ELVd-(+)-AUA. However, the ELVd-(+)-AUC hammerhead was the catalytically less efficient during in vitro transcription, most likely because of the transient adoption of catalytically-inactive metastable structures. These results suggest that natural hammerheads have been evolutionary selected to function co-transcriptionally, and provide a model explaining the lack of trinucleotide AUC preceding the self-cleavage site of most natural hammerheads. Comparisons with other natural hammerheads showed that the ELVd-(+)-GUC and ELVd-(+)-AUC hammerheads are the catalytically most active in a post-transcriptional context with low magnesium.
IPB Mainnav Search