zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Dinesh, D. C.; Calderón Villalobos, L. I. A.; Abel, S.; Structural Biology of Nuclear Auxin Action Trends Plant Sci. 21, 302-316, (2016) DOI: 10.1016/j.tplants.2015.10.019

Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.
Publikation

Delker, C.; Quint, M.; Expression level polymorphisms: heritable traits shaping natural variation Trends Plant Sci. 16, 481-488, (2011) DOI: 10.1016/j.tplants.2011.05.009

Natural accessions of many species harbor a wealth of genetic variation visible in a large array of phenotypes. Although expression level polymorphisms (ELPs) in several genes have been shown to contribute to variation in diverse traits, their general impact on adaptive variation has likely been underestimated. At present, ELPs have predominantly been correlated to quantitative trait loci (eQTLs) that occupy central hubs in signaling networks, which pleiotropically affect numerous traits. To increase the sensitivity of detecting minor effect eQTLs or those that act in a trait-specific manner, we emphasize the need for more systematic approaches. This requires, but is not limited to, refining experimental designs such as reduction of tissue complexity and combinatorial methods including a priori defined networks.
IPB Mainnav Search