zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 21.

Publikation

Nietzschmann, L.; Smolka, U.; Perino, E. H. B.; Gorzolka, K.; Stamm, G.; Marillonnet, S.; Bürstenbinder, K.; Rosahl, S.; The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato Sci. Rep. 13, 20534, (2023) DOI: 10.1038/s41598-023-47648-x

Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Publikation

Yang, B.; Stamm, G.; Bürstenbinder, K.; Voiniciuc, C.; Microtubule‐associated IQD9 orchestrates cellulose patterning in seed mucilage New Phytol. 235, 1096-1110, (2022) DOI: 10.1111/nph.18188

Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes are guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis. Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles in cell wall polysaccharide biosynthesis. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. IQD9 as well as a previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein act to maintain cellulose synthase velocity. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in cell wall biosynthesis. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.
Publikation

Zang, J.; Klemm, S.; Pain, C.; Duckney, P.; Bao, Z.; Stamm, G.; Kriechbaumer, V.; Bürstenbinder, K.; Hussey, P. J.; Wang, P.; A novel plant actin-microtubule bridging complex regulates cytoskeletal and ER structure at ER-PM contact sites Curr. Biol. 31, 1251-1260, (2021) DOI: 10.1016/j.cub.2020.12.009

In plants, the cortical endoplasmic reticulum (ER) network is connected to the plasma membrane (PM) through the ER-PM contact sites (EPCSs), whose structures are maintained by EPCS resident proteins and the cytoskeleton.1-7 Strong co-alignment between EPCSs and the cytoskeleton is observed in plants,1,8 but little is known of how the cytoskeleton is maintained and regulated at the EPCS. Here, we have used a yeast-two-hybrid screen and subsequent in vivo interaction studies in plants by fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) analysis to identify two microtubule binding proteins, KLCR1 (kinesin-light-chain-related protein 1) and IQD2 (IQ67-domain 2), that interact with the actin binding protein NET3C and form a component of plant EPCS that mediates the link between the actin and microtubule networks. The NET3C-KLCR1-IQD2 module, acting as an actin-microtubule bridging complex, has a direct influence on ER morphology and EPCS structure. Their loss-of-function mutants, net3a/NET3C RNAi, klcr1, or iqd2, exhibit defects in pavement cell morphology, which we suggest is linked to the disorganization of both actin filaments and microtubules. In conclusion, our results reveal a novel cytoskeletal-associated complex, which is essential for the maintenance and organization of cytoskeletal structure and ER morphology at the EPCS and for normal plant cell morphogenesis.
Publikation

Mielke, S.; Zimmer, M.; Meena, M. K.; Dreos, R.; Stellmach, H.; Hause, B.; Voiniciuc, C.; Gasperini, D.; Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression Sci. Adv. 7, eabf0356, (2021) DOI: 10.1126/sciadv.abf0356

Despite the vital roles of jasmonoyl-isoleucine (JA-Ile) in governing plant growth and environmental acclimation, it remains unclear what intracellular processes lead to its induction. Here, we provide compelling genetic evidence that mechanical and osmotic regulation of turgor pressure represents a key elicitor of JA-Ile biosynthesis. After identifying cell wall mutant alleles in KORRIGAN1 (KOR1) with elevated JA-Ile in seedling roots, we found that ectopic JA-Ile resulted from cell nonautonomous signals deriving from enlarged cortex cells compressing inner tissues and stimulating JA-Ile production. Restoring cortex cell size by cell type–specific KOR1 complementation, by isolating a genetic kor1 suppressor, and by lowering turgor pressure with hyperosmotic treatments abolished JA-Ile signaling. Conversely, hypoosmotic treatment activated JA-Ile signaling in wild-type plants. Furthermore, constitutive JA-Ile levels guided mutant roots toward greater water availability. Collectively, these findings enhance our understanding on JA-Ile biosynthesis initiation and reveal a previously undescribed role of JA-Ile in orchestrating environmental resilience.
Publikation

Menna, A.; Dora, S.; Sancho-Andrés, G.; Kashyap, A.; Meena, M. K.; Sklodowski, K.; Gasperini, D.; Coll, N. S.; Sánchez-Rodríguez, C.; A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics BMC Biol. 19, 161, (2021) DOI: 10.1186/s12915-021-01100-6

Background: Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. Results: Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. Conclusions: Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.Keywords: Arabidopsis, Fusarium oxysporum, Ralstonia solanacearum, plant-pathogen interaction, dual-time coursetranscriptomics, cellulose, ethylene, defense response
Publikation

Kumari, P.; Dahiya, P.; Livanos, P.; Zergiebel, L.; Kölling, M.; Poeschl, Y.; Stamm, G.; Hermann, A.; Abel, S.; Müller, S.; Bürstenbinder, K.; IQ67 DOMAIN proteins facilitate preprophase band formation and division-plane orientation Nat. Plants 7, 739-747, (2021) DOI: 10.1038/s41477-021-00923-z

Spatiotemporal control of cell division is essential for the growth and development of multicellular organisms. In plant cells, proper cell plate insertion during cytokinesis relies on the premitotic establishment of the division plane at the cell cortex. Two plant-specific cytoskeleton arrays, the preprophase band (PPB) and the phragmoplast, play important roles in division-plane orientation and cell plate formation, respectively1. Microtubule organization and dynamics and their communication with membranes at the cortex and cell plate are coordinated by multiple, mostly distinct microtubule-associated proteins2. How division-plane selection and establishment are linked, however, is still unknown. Here, we report members of the Arabidopsis IQ67 DOMAIN (IQD) family3 as microtubule-targeted proteins that localize to the PPB and phragmoplast and additionally reside at the cell plate and a polarized cortical region including the cortical division zone (CDZ). IQDs physically interact with PHRAGMOPLAST ORIENTING KINESIN (POK) proteins4,5 and PLECKSTRIN HOMOLOGY GTPase ACTIVATING (PHGAP) proteins6, which are core components of the CDZ1. The loss of IQD function impairs PPB formation and affects CDZ recruitment of POKs and PHGAPs, resulting in division-plane positioning defects. We propose that IQDs act as cellular scaffolds that facilitate PPB formation and CDZ set-up during symmetric cell division.
Publikation

Dallery, J.-F.; Zimmer, M.; Halder, V.; Suliman, M.; Pigné, S.; Le Goff, G.; Gianniou, D. D.; Trougakos, I. P.; Ouazzani, J.; Gasperini, D.; O’Connell, R. J.; Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B J. Exp. Bot. 71, 2910-2921, (2020) DOI: 10.1093/jxb/eraa061

Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterised by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters (BGCs), and their expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in repression of some BGCs through H3K4 trimethylation, allowed overproduction of 3 families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate (MeJA), an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited MeJA-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive JA-Ile synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally-related molecules, suppressed JA-Ile signalling by preventing degradation of JAZ proteins, the repressors of JA responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced IAA-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.
Publikation

Mitra, D.; Klemm, S.; Kumari, P.; Quegwer, J.; Möller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K.; Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana J. Exp. Bot. 70, 529-543, (2019) DOI: 10.1093/jxb/ery395

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles of calcium in regulation of PC morphogenesis. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Publikation

Mielke, S.; Gasperini, D.; Interplay between Plant Cell Walls and Jasmonate Production Plant Cell Physiol. 60, 2629-2637, (2019) DOI: 10.1093/pcp/pcz119

Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Publikation

Schulze, A.; Zimmer, M.; Mielke, S.; Stellmach, H.; Melnyk, C. W.; Hause, B.; Gasperini, D.; Wound-Induced Shoot-to-Root Relocation of JA-Ile Precursors Coordinates Arabidopsis Growth Mol. Plant 12, 1383-1394, (2019) DOI: 10.1016/j.molp.2019.05.013

Multicellular organisms rely on the movement of signaling molecules across cells, tissues, and organs to communicate among distal sites. In plants, localized leaf damage activates jasmonic acid (JA)-dependent transcriptional reprogramming in both harmed and unharmed tissues. Although it has been indicated that JA species can translocate from damaged into distal sites, the identity of the mobile compound(s), the tissues through which they translocate, and the effect of their relocation remain unknown. Here, we found that following shoot wounding, the relocation of endogenous jasmonates through the phloem is essential to initiate JA signaling and stunt growth in unharmed roots of Arabidopsis thaliana. By employing grafting experiments and hormone profiling, we uncovered that the hormone precursor cis-12-oxo-phytodienoic acid (OPDA) and its derivatives, but not the bioactive JA-Ile conjugate, translocate from wounded shoots into undamaged roots. Upon root relocation, the mobile precursors cooperatively regulated JA responses through their conversion into JA-Ile and JA signaling activation. Collectively, our findings demonstrate the existence of long-distance translocation of endogenous OPDA and its derivatives, which serve as mobile molecules to coordinate shoot-to-root responses, and highlight the importance of a controlled redistribution of hormone precursors among organs during plant stress acclimation.
IPB Mainnav Search