zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr sort ascending Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Gasperini, D.; Greenland, A.; Hedden, P.; Dreos, R.; Harwood, W.; Griffiths, S. Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids J Exp Bot 63, 4419-4436, (2012) DOI: 10.1093/jxb/ers138

Over the next decade, wheat grain production must increase to meet the demand of a fast growing human population. One strategy to meet this challenge is to raise wheat productivity by optimizing plant stature. The Reduced height 8 (Rht8) semi-dwarfing gene is one of the few, together with the Green Revolution genes, to reduce stature of wheat (Triticum aestivum L.), and improve lodging resistance, without compromising grain yield. Rht8 is widely used in dry environments such as Mediterranean countries where it increases plant adaptability. With recent climate change, its use could become increasingly important even in more northern latitudes. In the present study, the characterization of Rht8 was furthered. Morphological analyses show that the semi-dwarf phenotype of Rht8 lines is due to shorter internodal segments along the wheat culm, achieved through reduced cell elongation. Physiological experiments show that the reduced cell elongation is not due to defective gibberellin biosynthesis or signalling, but possibly to a reduced sensitivity to brassinosteroids. Using a fine-resolution mapping approach and screening 3104 F2 individuals of a newly developed mapping population, the Rht8 genetic interval was reduced from 20.5 cM to 1.29 cM. Comparative genomics with model genomes confined the Rht8 syntenic intervals to 3.3 Mb of the short arm of rice chromosome 4, and to 2 Mb of Brachypodium distachyon chromosome 5. The very high resolution potential of the plant material generated is crucial for the eventual cloning of Rht8.
Publikation

Gasperini, D.; Chételat, A.; Acosta, I. F.; Goossens, J.; Pauwels, L.; Goossens, A.; Dreos, R.; Alfonso, E.; Farmer, E. E. Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth PLOS Genet 11, e1005300, (2015) DOI: 10.1371/journal.pgen.1005300

Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.
Publikation

Gasperini, D.; Chauvin, A.; Acosta, I. F.; Kurenda, A.; Stolz, S.; Chételat, A.; Wolfender, J.-L.; Farmer, E. E. Axial and Radial Oxylipin Transport Plant Physiol 169, 2244-2254, (2015) DOI: 10.1104/pp.15.01104

Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes.
Publikation

Acosta, I. F.; Gasperini, D.; Chételat, A.; Stolz, S.; Santuari, L.; Farmer, E. E. Role of NINJA in root jasmonate signaling Proc Natl Acad Sci USA 110, 15473-15478, (2013) DOI: 10.1073/pnas.1307910110

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
IPB Mainnav Search