Publikationen - Molekulare Signalverarbeitung
Aktive Filter
Autor Nach Häufigkeit alphabetisch sortiert: Gasperini, D.
Erscheinungsjahr: 2013
Typ der Publikation: Publikation
Autor Nach Häufigkeit alphabetisch sortiert: Quint, M. & Gray, W.M
Autor Nach Häufigkeit alphabetisch sortiert: Pedras, M.S
Erscheinungsjahr: 2012
Autor Nach Häufigkeit alphabetisch sortiert: Mao, H
Alle Filter entfernen
Suchfilter
- Typ der Publikation
- Publikation (2)
- Erscheinungsjahr
- Journal / Verlag
- J Exp Bot (1)
- Proc Natl Acad Sci USA (1)
- Autor Nach Häufigkeit alphabetisch sortiert
- Quint, M. (5)
- Hause, B. (4)
- Wasternack, C. (4)
- Stenzel, I. (3)
- Abel, S. (2)
- Brandt, W. (2)
- Delker, C. (2)
- Drost, H.-G. (2)
- Estelle, M. (2)
- Forner, S. (2)
- Gasperini, D. (2)
- Goetz, S. (2)
- Grosse, I. (2)
- Hellwege, A. (2)
- Miersch, O. (2)
- Ullrich, K. K. (2)
- Acosta, I. F. (1)
- Adamson, A.W. (1)
- Alonso, J.M. (1)
- Armitage, L. (1)
- Barton, M. K. (1)
- Basseli, G.W. (1)
- Bou-Torrent, J. (1)
- Brandt, R. (1)
- Bönn, M. (1)
- Bürstenbinder, K. (1)
- Bürstenbinder, K. & Müller, J. (1)
- Calderón Villalobos, L. I. A. (1)
- Calderón Villalobos, L.I. (1)
- Casalongué, C.A. (1)
- Chaâbene, Z. (1)
- Choi, S.-B. (1)
- Chételat, A. (1)
- De Oliveira, C. (1)
- Dekkers, B.J.W. (1)
- Dhurvas Chandrasekaran, D. & Abel, S. (1)
- Dreos, R. (1)
- Drira, N. (1)
- Elleuch, A. (1)
- Farmer, E. E. (1)
- Fellenberg, C. (1)
- Gabel, A. (1)
- Gilbert, J. (1)
- Greb, T. (1)
- Greenland, A. (1)
- Griffiths, S. (1)
- Grubb, C.D. (1)
- Grubb, D.C. (1)
- Handrick, V. (1)
- Harwood, W. (1)
- Hauptmann, V. (1)
- Hause, G. (1)
- Hedden, P. (1)
- Heilmann, I. (1)
- Holdsworth, M.J. & Bentsink, L. (1)
- Huang, H. (1)
- Iglesias, M.J. (1)
- Ischebeck, T. (1)
- Ivetac, A. (1)
- Janitza, P. (1)
- Kepinski, S. (1)
- Khemakhem, B. (1)
- King, J.R. (1)
- Kirmse, N. (1)
- Kohlschmidt, J. (1)
- Kopycki, J. (1)
- Krasnogor, N. (1)
- Kutter, C. (1)
- Kwong, R. (1)
- Lamattina, L. (1)
- Lanz, C. (1)
- Lee, S. (1)
- Leubner-Metzger, G. (1)
- Liu, T. (1)
- Mao, H. (1)
- Marshall, A. (1)
- Martínez-García, J. F. (1)
- McCaig, B. (1)
- Mejdoub, H. (1)
- Musielak, T. (1)
- Müller, J. (1)
- Müller, K. (1)
- Napier, R. (1)
- Navarro-Quezada, A. (1)
- Ott, F. (1)
- Otto, M. (1)
- Palauqui, J.-C. (1)
- Parry, G. (1)
- París, R. (1)
- Pearce, S. (1)
- Pedras, M.S. (1)
- Poeschl, Y. (1)
- Quint, M. & Gray, W.M. (1)
- Quint, M. & Grosse, I. (1)
- Reinhart, B. J. (1)
- Salla-Martret, M. (1)
- Santuari, L. (1)
- Savchenko, T. (1)
- Schmid, M. (1)
- Schmidt, D. (1)
Zeige Ergebnisse 1 bis 2 von 2.
Acosta, I. F.; Gasperini, D.; Chételat, A.; Stolz, S.; Santuari, L.; Farmer, E. E. Role of NINJA in root jasmonate signaling Proc Natl Acad Sci USA 110, 15473-15478, (2013) DOI: 10.1073/pnas.1307910110
Wound responses in plants have to be
coordinated between organs so that locally reduced growth in a wounded
tissue is balanced by appropriate growth elsewhere in the body. We used a
JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected
in the organ-specific activation of jasmonate (JA) signaling in
Arabidopsis thaliana seedlings. Wounding one cotyledon activated the
reporter in both aerial and root tissues, and this was either disrupted
or restricted to certain organs in mutant alleles of core components of
the JA pathway including COI1, OPR3, and JAR1. In contrast, three other
mutants showed constitutive activation of the reporter in the roots and
hypocotyls of unwounded seedlings. All three lines harbored mutations in
Novel Interactor of JAZ (NINJA), which encodes part of a repressor
complex that negatively regulates JA signaling. These ninja mutants
displayed shorter roots mimicking JA-mediated growth inhibition, and
this was due to reduced cell elongation. Remarkably, this phenotype and
the constitutive JAZ10 expression were still observed in backgrounds
lacking the ability to synthesize JA or the key transcriptional
activator MYC2. Therefore, JA-like responses can be recapitulated in
specific tissues without changing a plant’s ability to make or perceive
JA, and MYC2 either has no role or is not the only derepressed
transcription factor in ninja mutants. Our results show that the role of
NINJA in the root is to repress JA signaling and allow normal cell
elongation. Furthermore, the regulation of the JA pathway differs
between roots and aerial tissues at all levels, from JA biosynthesis to
transcriptional activation.
Gasperini, D.; Greenland, A.; Hedden, P.; Dreos, R.; Harwood, W.; Griffiths, S. Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids J Exp Bot 63, 4419-4436, (2012) DOI: 10.1093/jxb/ers138
Over the next decade, wheat grain production
must increase to meet the demand of a fast growing human population. One
strategy to meet this challenge is to raise wheat productivity by
optimizing plant stature. The Reduced height 8 (Rht8) semi-dwarfing gene
is one of the few, together with the Green Revolution genes, to reduce
stature of wheat (Triticum aestivum L.), and improve lodging resistance,
without compromising grain yield. Rht8 is widely used in dry
environments such as Mediterranean countries where it increases plant
adaptability. With recent climate change, its use could become
increasingly important even in more northern latitudes. In the present
study, the characterization of Rht8 was furthered. Morphological
analyses show that the semi-dwarf phenotype of Rht8 lines is due to
shorter internodal segments along the wheat culm, achieved through
reduced cell elongation. Physiological experiments show that the reduced
cell elongation is not due to defective gibberellin biosynthesis or
signalling, but possibly to a reduced sensitivity to brassinosteroids.
Using a fine-resolution mapping approach and screening 3104 F2
individuals of a newly developed mapping population, the Rht8 genetic
interval was reduced from 20.5 cM to 1.29 cM. Comparative genomics with
model genomes confined the Rht8 syntenic intervals to 3.3 Mb of the
short arm of rice chromosome 4, and to 2 Mb of Brachypodium distachyon
chromosome 5. The very high resolution potential of the plant material
generated is crucial for the eventual cloning of Rht8.