zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Acosta, I. F.; Gasperini, D.; Chételat, A.; Stolz, S.; Santuari, L.; Farmer, E. E.; Role of NINJA in root jasmonate signaling Proc. Natl. Acad. Sci. U.S.A. 110, 15473-15478, (2013) DOI: 10.1073/pnas.1307910110

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
Publikation

Costa, C. T.; Strieder, M. L.; Abel, S.; Delatorre, C. A.; Phosphorus and nitrogen interaction: loss of QC identity in response to P or N limitation is antecipated in pdr23 mutant Braz. J. Plant Physiol. 23, 219-229, (2011) DOI: 10.1590/S1677-04202011000300006

Changes in root architecture are an important adaptive strategy used by plants in response to limited nutrient availability to increase the odds of acquiring them. The quiescent center (QC) plays an important role by altering the meristem activity causing differentiation and therefore, inducing a determinate growth program. The arabidopsis mutant pdr23 presents primary short root in the presence of nitrate and is inefficient in the use of nucleic acids as a source of phosphorus. In this study the effect of the pdr23 mutation on the QC maintenance under low phosphorus (P) and/or nitrogen is evaluated. QC identity is maintained in wild-type in the absence of nitrate and/or phosphate if nucleic acids can be used as an alternative source of these nutrients, but not in pdr23. The mutant is not able to use nucleic acids efficiently for substitute Pi, determinate growth is observed, similar to wild-type in the total absence of P. In the absence of N pdr23 loses the expression of QC identity marker earlier than wild-type, indicating that not only the response to P is altered, but also to N. The data suggest that the mutation affects a gene involved either in the crosstalk between these nutrients or in a pathway shared by both nutrients limitation response. Moreover loss of QC identity is also observed in wild-type in the absence of N at longer limitation. Less drastic symptoms are observed in lateral roots of both genotypes.
Publikation

Asquini, E.; Gerdol, M.; Gasperini, D.; Igic, B.; Graziosi, G.; Pallavicini, A.; S-RNase-like Sequences in Styles of Coffea (Rubiaceae). Evidence for S-RNase Based Gametophytic Self-Incompatibility? Trop. Plant Biol. 4, 237-249, (2011) DOI: 10.1007/s12042-011-9085-2

Although RNase-based self-incompatibility (SI) is suspected to operate in a wide group of plant families, it has been characterized as the molecular genetic basis of SI in only three distantly related families, Solanaceae, Plantaginaceae, and Rosaceae, all described over a decade ago. Previous studies found that gametophytic SI, controlled by a multi-allelic S-locus, operates in the coffee family (Rubiaceae). The molecular genetic basis of this mechanism remains unknown, despite the immense importance of coffee as an agricultural commodity. Here, we isolated ten sequences with features of T2-S-type RNases from two Coffea species. While three of the sequences were identified in both species and clearly do not appear to be S-locus products, our data suggest that six sequences may be S-alleles in the self-incompatible C. canephora, and one may be a relict in the self-compatible C. arabica. We demonstrate that these sequences show style-specific expression, display polymorphism in C. canephora, and cluster with S-locus products in a phylogenetic analysis that includes other plant families with RNase-based SI. Although our results are not definitive, in part because the available plant materials were limited and data patterns relatively complex, our results strongly hint that RNase-based SI mechanism operates in the Rubiaceae family.
IPB Mainnav Search