zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 9 von 9.

Publikation

Mielke, S.; Gasperini, D.; Interplay between Plant Cell Walls and Jasmonate Production Plant Cell Physiol. 60, 2629-2637, (2019) DOI: 10.1093/pcp/pcz119

Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Publikation

Schulze, A.; Zimmer, M.; Mielke, S.; Stellmach, H.; Melnyk, C. W.; Hause, B.; Gasperini, D.; Wound-Induced Shoot-to-Root Relocation of JA-Ile Precursors Coordinates Arabidopsis Growth Mol. Plant 12, 1383-1394, (2019) DOI: 10.1016/j.molp.2019.05.013

Multicellular organisms rely on the movement of signaling molecules across cells, tissues, and organs to communicate among distal sites. In plants, localized leaf damage activates jasmonic acid (JA)-dependent transcriptional reprogramming in both harmed and unharmed tissues. Although it has been indicated that JA species can translocate from damaged into distal sites, the identity of the mobile compound(s), the tissues through which they translocate, and the effect of their relocation remain unknown. Here, we found that following shoot wounding, the relocation of endogenous jasmonates through the phloem is essential to initiate JA signaling and stunt growth in unharmed roots of Arabidopsis thaliana. By employing grafting experiments and hormone profiling, we uncovered that the hormone precursor cis-12-oxo-phytodienoic acid (OPDA) and its derivatives, but not the bioactive JA-Ile conjugate, translocate from wounded shoots into undamaged roots. Upon root relocation, the mobile precursors cooperatively regulated JA responses through their conversion into JA-Ile and JA signaling activation. Collectively, our findings demonstrate the existence of long-distance translocation of endogenous OPDA and its derivatives, which serve as mobile molecules to coordinate shoot-to-root responses, and highlight the importance of a controlled redistribution of hormone precursors among organs during plant stress acclimation.
Publikation

Ronzan, M.; Piacentini, D.; Fattorini, L.; Federica, D. R.; Caboni, E.; Eiche, E.; Ziegler, J.; Hause, B.; Riemann, M.; Betti, C.; Altamura, M. M.; Falasca, G.; Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure Environ. Exp. Bot. 165, 59-69, (2019) DOI: 10.1016/j.envexpbot.2019.05.013

Soil pollutants may affect root growth through interactions among phytohormones like auxin and jasmonates. Rice is frequently grown in paddy fields contaminated by cadmium and arsenic, but the effects of these pollutants on jasmonates/auxin crosstalk during adventitious and lateral roots formation are widely unknown. Therefore, seedlings of Oryza sativa cv. Nihonmasari and of the jasmonate-biosynthetic mutant coleoptile photomorphogenesis2 were exposed to cadmium and/or arsenic, and/or jasmonic acid methyl ester, and then analysed through morphological, histochemical, biochemical and molecular approaches.In both genotypes, arsenic and cadmium accumulated in roots more than shoots. In the roots, arsenic levels were more than twice higher than cadmium levels, either when arsenic was applied alone, or combined with cadmium. Pollutants reduced lateral root density in the wild -type in every treatment condition, but jasmonic acid methyl ester increased it when combined with each pollutant. Interestingly, exposure to cadmium and/or arsenic did not change lateral root density in the mutant. The transcript levels of OsASA2 and OsYUCCA2, auxin biosynthetic genes, increased in the wild-type and mutant roots when pollutants and jasmonic acid methyl ester were applied alone. Auxin (indole-3-acetic acid) levels transiently increased in the roots with cadmium and/or arsenic in the wild-type more than in the mutant. Arsenic and cadmium, when applied alone, induced fluctuations in bioactive jasmonate contents in wild-type roots, but not in the mutant. Auxin distribution was evaluated in roots of OsDR5::GUS seedlings exposed or not to jasmonic acid methyl ester added or not with cadmium and/or arsenic. The DR5::GUS signal in lateral roots was reduced by arsenic, cadmium, and jasmonic acid methyl ester. Lipid peroxidation, evaluated as malondialdehyde levels, was higher in the mutant than in the wild-type, and increased particularly in As presence, in both genotypes.Altogether, the results show that an auxin/jasmonate interaction affects rice root system development in the presence of cadmium and/or arsenic, even if exogenous jasmonic acid methyl ester only slightly mitigates pollutants toxicity.
Publikation

Wasternack, C.; Hause, B.; The missing link in jasmonic acid biosynthesis Nat. Plants 5, 776-777, (2019) DOI: 10.1038/s41477-019-0492-y

Jasmonic acid biosynthesis starts in chloroplasts and is finalized in peroxisomes. The required export of a crucial intermediate out of the chloroplast is now shown to be mediated by a protein from the outer envelope called JASSY.
Publikation

Wasternack, C.; Hause, B.; Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany Ann. Bot. 111, 1021-1058, (2013) DOI: 10.1093/aob/mct067

BackgroundJasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development.ScopeThe present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception.ConclusionsThe last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Publikation

Wasternack, C.; Forner, S.; Strnad, M.; Hause, B.; Jasmonates in flower and seed development Biochimie 95, 79-85, (2013) DOI: 10.1016/j.biochi.2012.06.005

Jasmonates are ubiquitously occurring lipid-derived signaling compounds active in plant development and plant responses to biotic and abiotic stresses. Upon environmental stimuli jasmonates are formed and accumulate transiently. During flower and seed development, jasmonic acid (JA) and a remarkable number of different metabolites accumulate organ- and tissue specifically. The accumulation is accompanied with expression of jasmonate-inducible genes. Among these genes there are defense genes and developmentally regulated genes. The profile of jasmonate compounds in flowers and seeds covers active signaling molecules such as JA, its precursor 12-oxophytodienoic acid (OPDA) and amino acid conjugates such as JA-Ile, but also inactive signaling molecules occur such as 12-hydroxy-JA and its sulfated derivative. These latter compounds can occur at several orders of magnitude higher level than JA. Metabolic conversion of JA and JA-Ile to hydroxylated compounds seems to inactivate JA signaling, but also specific functions of jasmonates in flower and seed development were detected. In tomato OPDA is involved in embryo development. Occurrence of jasmonates, expression of JA-inducible genes and JA-dependent processes in flower and seed development will be discussed.
Publikation

Acosta, I. F.; Gasperini, D.; Chételat, A.; Stolz, S.; Santuari, L.; Farmer, E. E.; Role of NINJA in root jasmonate signaling Proc. Natl. Acad. Sci. U.S.A. 110, 15473-15478, (2013) DOI: 10.1073/pnas.1307910110

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Benno Parthier und die Jasmonatforschung in Halle (Hacker, J., ed.). Nova Acta Leopoldina Supplementum Nr. 28, 29-38, (2013)

0
IPB Mainnav Search