zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: sort ascending Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 57.

Publikation

Quint, M.; Melchinger, A.E.; Dussle, C.M.; Lübberstedt, T. Breeding for virus resistance in maize Genetika 32, 283-291, (2000)

0
Publikation

Dussle, C.M.; Quint, M.; Xu, M.L.; Melchinger, A.E.; Lübberstedt, T. Conversion of AFLP fragments tightly linked to Scmv1 and Scmv2 into simple PCR-based markers Theor Appl Genet 105, 1190-1195, (2002)

0
Publikation

Quint, M.; Mihaljevic, R.; Dussle, C.M.; Xu, M.L.; Melchinger, A.E.; Lübberstedt, T. Development of RGA-CAPS markers and genetic mapping of candidate genes for SCMV resistance in maize Theor Appl Genet 105, 355-366, (2002)

0
Publikation

Quint, M.; Dussle, C.M.; Melchinger, A.E.; Lübberstedt, T. Identification of genetically linked RGAs by BAC screening in maize and implication for gene cloning, mapping, and MAS Theor Appl Genet 106, 1171-1177, (2003)

0
Publikation

Dussle, C.M.; Quint, M.; Xu, M.L.; Melchinger, A.E.; Lübberstedt, T. Saturation of two chromosome regions conferring resistance to SCMV with SSR and AFLP markers by targeted BSA Theor Appl Genet 106, 485-493, (2003)

0
Publikation

Frisch, M.; Quint, M.; Lübberstedt, T.; Melchinger, A.E. Duplicate marker loci can result in incorrect locus orders on linkage maps Theor Appl Genet 109, 305-316, (2004)

0
Publikation

Quint, M.; Ito, H.; Zhang, W.; Gray, W.M. Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases Plant J 43, 371-383, (2005)

Selective protein degradation by the ubiquitin-proteasome pathway has emerged as a key regulatory mechanism in a wide variety of cellular processes. The selective components of this pathway are the E3 ubiquitin-ligases which act downstream of the ubiquitin-activating and -conjugating enzymes to identify specific substrates for ubiquitinylation. SCF-type ubiquitin-ligases are the most abundant class of E3 enzymes in Arabidopsis. In a genetic screen for enhancers of the tir1-1 auxin response defect, we identified eta1/axr6-3, a recessive and temperature-sensitive mutation in the CUL1 core component of the SCFTIR1 complex. The axr6-3 mutation interferes with Skp1 binding, thus preventing SCF complex assembly. axr6-3 displays a pleiotropic phenotype with defects in numerous SCF-regulated pathways including auxin signaling, jasmonate signaling, flower development, and photomorphogenesis. We used axr6-3 as a tool for identifying pathways likely to be regulated by SCF-mediated proteolysis and propose new roles for SCF regulation of the far-red light/phyA and sugar signaling pathways. The recessive inheritance and the temperature-sensitive nature of the pleiotropically acting axr6-3 mutation opens promising possibilities for the identification and investigation of SCF-regulated pathways in Arabidopsis.
Publikation

De Nardi, B.; Dreos, R.; Del Terra, L.; Martellossi, C.; Asquini, E.; Tornincasa, P.; Gasperini, D.; Pacchioni, B.; Rathinavelu, R.; Pallavicini, A.; Graziosi, G. Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance Genome 49, 1594-1605, (2006) DOI: 10.1139/g06-125

Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
Publikation

Quint, M.; Gray, W.M. Auxin signaling Curr Opin Plant Biol 9, 448-453, (2006) DOI: 10.1016/j.pbi.2006.07.006

Auxin regulates a host of plant developmental and physiological processes, including embryogenesis, vascular differentiation, organogenesis, tropic growth, and root and shoot architecture. Genetic and biochemical studies carried out over the past decade have revealed that much of this regulation involves the SCFTIR1/AFB-mediated proteolysis of the Aux/IAA family of transcriptional regulators. With the recent finding that the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins also function as auxin receptors, a potentially complete, and surprisingly simple, signaling pathway from perception to transcriptional response is now before us. However, understanding how this seemingly simple pathway controls the myriad of specific auxin responses remains a daunting challenge, and compelling evidence exists for SCFTIR1/AFB-independent auxin signaling pathways.
Bücher und Buchkapitel

Quint, M.; Lübberstedt, T. Application of resistance gene analogs in breeding for virus resistance (Rao, GP, Valverde, RA, Christomas, D.). Techniques in Diagnosis of Plant Viruses. Studium Press LLC, USA 267-287, (2008)

0
IPB Mainnav Search