zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 14.

Bücher und Buchkapitel

Mielke, S.; Gasperini, D. Plant–Insect Bioassay for Testing Arabidopsis Resistance to the Generalist Herbivore Spodoptera littoralis (Champion, A. & Laplaze, L., eds.). Methods Mol Biol 2085, 69-78, (2020) ISBN: 978-1-0716-0142-6 DOI: 10.1007/978-1-0716-0142-6_5

Jasmonates are essential engineers of plant defense responses against many pests, including herbivorous insects. Herbivory induces the production of jasmonic acid (JA) and its bioactive conjugate jasmonoyl-l-isoleucine (JA-Ile), which then triggers a large transcriptional reprogramming to promote plant acclimation. The contribution of the JA pathway, including its components and regulators, to defense responses against insect herbivory can be evaluated by conducting bioassays with a wide range of host plants and insect pests. Here, we describe a detailed and reproducible protocol for testing feeding behavior of the generalist herbivore Spodoptera littoralis on the model plant Arabidopsis thaliana and hence infer the contribution of JA-mediated plant defense responses to a chewing insect.
Publikationen in Druck

Dallery, J.-F.; Zimmer, M.; Halder, V.; Suliman, M.; Pigné, S.; Le Goff, G.; Gianniou, D. D.; Trougakos, I. P.; Ouazzani, J.; Gasperini, D.; O’Connell, R. J. Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B bioRxiv (2019) DOI: 10.1101/651562

Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterised by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters (BGCs), and their expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in repression of some BGCs through H3K4 trimethylation, allowed overproduction of 3 families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate (MeJA), an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited MeJA-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive JA-Ile synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally-related molecules, suppressed JA-Ile signalling by preventing degradation of JAZ proteins, the repressors of JA responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced IAA-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.
Publikation

Schulze, A.; Zimmer, M.; Mielke, S.; Stellmach, H.; Melnyk, C. W.; Hause, B.; Gasperini, D. Shoot-to-root translocation of the jasmonate precursor 12-oxo-phytodienoic acid (OPDA) coordinates plant growth responses following tissue damage bioRxiv (2019) DOI: 10.1101/517193

Multicellular organisms rely upon the movement of signaling molecules across cells, tissues and organs to communicate among distal sites. In plants, herbivorous insects, necrotrophic pathogens and mechanical wounding stimulate the activation of the jasmonate (JA) pathway, which in turn triggers the transcriptional changes necessary to protect plants against those challenges, often at the expense of growth. Although previous evidence indicated that JA species can translocate from damaged into distal sites, the identity of the mobile compound(s), the tissues through which they translocate and the consequences of their relocation remain unknown. Here, we demonstrated that endogenous JA species generated after shoot injury translocate to unharmed roots via the phloem vascular tissue in Arabidopsis thaliana. By wounding wild-type shoots of chimeric plants and by quantifying the relocating compounds from their JA-deficient roots, we uncovered that the JA-Ile precursor 12-oxo-phytodienoic acid (OPDA) is a mobile JA species. Our data also showed that OPDA is a primary mobile compound relocating to roots where, upon conversion to the bioactive hormone, it induces JA-mediated gene expression and root growth inhibition. Collectively, our findings reveal the existence of long-distance transport of endogenous OPDA which serves as a communication molecule to coordinate shoot-to-root responses, and highlight the importance of a controlled distribution of JA species among organs during plant stress acclimation.
Publikation

Schulze, A.; Zimmer, M.; Mielke, S.; Stellmach, H.; Melnyk, C. W.; Hause, B.; Gasperini, D. Wound-Induced Shoot-to-Root Relocation of JA-Ile Precursors Coordinates Arabidopsis Growth Mol Plant 12, 1383-1394, (2019) DOI: 10.1016/j.molp.2019.05.013

Multicellular organisms rely on the movement of signaling molecules across cells, tissues, and organs to communicate among distal sites. In plants, localized leaf damage activates jasmonic acid (JA)-dependent transcriptional reprogramming in both harmed and unharmed tissues. Although it has been indicated that JA species can translocate from damaged into distal sites, the identity of the mobile compound(s), the tissues through which they translocate, and the effect of their relocation remain unknown. Here, we found that following shoot wounding, the relocation of endogenous jasmonates through the phloem is essential to initiate JA signaling and stunt growth in unharmed roots of Arabidopsis thaliana. By employing grafting experiments and hormone profiling, we uncovered that the hormone precursor cis-12-oxo-phytodienoic acid (OPDA) and its derivatives, but not the bioactive JA-Ile conjugate, translocate from wounded shoots into undamaged roots. Upon root relocation, the mobile precursors cooperatively regulated JA responses through their conversion into JA-Ile and JA signaling activation. Collectively, our findings demonstrate the existence of long-distance translocation of endogenous OPDA and its derivatives, which serve as mobile molecules to coordinate shoot-to-root responses, and highlight the importance of a controlled redistribution of hormone precursors among organs during plant stress acclimation.
Publikationen in Druck

Mielke, S.; Gasperini, D. Interplay between Plant Cell Walls and Jasmonate Production Plant Cell Physiol (2019) DOI: 10.1093/pcp/pcz119

Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Publikation

Kowalski, A. M.; Gooding, M.; Ferrante, A.; Slafer, G. A.; Orford, S.; Gasperini, D.; Griffiths, S. Agronomic assessment of the wheat semi-dwarfing gene Rht8 in contrasting nitrogen treatments and water regimes Field Crops Res 191, 150-160, (2016) DOI: 10.1016/j.fcr.2016.02.026

Reduced height 8 (Rht8) is the main alternative to the GA-insensitive Rht alleles in hot and dry environments where it reduces plant height without yield penalty. The potential of Rht8 in northern-European wheat breeding remains unclear, since the close linkage with the photoperiod-insensitive allele Ppd-D1a is unfavourable in the relatively cool summers. In the present study, two near-isogenic lines (NILs) contrasting for the Rht8/tall allele from Mara in a UK-adapted and photoperiod-sensitive wheat variety were evaluated in trials with varying nitrogen fertiliser (N) treatments and water regimes across sites in the UK and Spain.The Rht8 introgression was associated with a robust height reduction of 11% regardless of N treatment and water regime and the Rht8 NIL was more resistant to root-lodging at agronomically-relevant N levels than the tall NIL. In the UK with reduced solar radiation over the growing season than the site in Spain, the Rht8 NIL showed a 10% yield penalty at standard agronomic N levels due to concomitant reduction in grain number and spike number whereas grain weight and harvest index were not significantly different to the tall NIL. The yield penalty associated with the Rht8 introgression was overcome at low N and in irrigated conditions in the UK, and in the high-temperature site in Spain. Decreased spike length and constant spikelet number in the Rht8 NIL resulted in spike compaction of 15%, independent of N and water regime. The genetic interval of Rht8 overlaps with the compactum gene on 2DS, raising the possibility of the same causative gene. Further genetic dissection of these loci is required.
Publikation

Gasperini, D.; Acosta, I. F.; Farmer, E. E. Cotyledon Wounding of Arabidopsis Seedlings Bio Protoc 6, e1712, (2016) DOI: 10.21769/BioProtoc.1712

Damage to plant organs through both biotic and abiotic injury is very common in nature. Arabidopsis thaliana 5-day-old (5-do) seedlings represent an excellent system in which to study plant responses to mechanical wounding, both at the site of the damage and in distal unharmed tissues. Seedlings of wild type, transgenic or mutant lines subjected to single or repetitive cotyledon wounding can be used to quantify morphological alterations (e.g., root length, Gasperini et al., 2015), analyze the dynamics of reporter genes in vivo (Larrieu et al., 2015; Gasperini et al., 2015), follow transcriptional changes by quantitative RT-PCR (Acosta et al., 2013; Gasperini et al., 2015) or examine additional aspects of the wound response with a plethora of downstream procedures. Here we illustrate how to rapidly and reliably wound cotyledons of young seedlings, and show the behavior of two promoters driving the expression of β-glucuronidase (GUS) in entire seedlings and in the primary root meristem, following single or repetitive cotyledon wounding respectively. We describe two procedures that can be easily adapted to specific experimental needs.
Publikation

Gasperini, D.; Chételat, A.; Acosta, I. F.; Goossens, J.; Pauwels, L.; Goossens, A.; Dreos, R.; Alfonso, E.; Farmer, E. E. Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth PLOS Genet 11, e1005300, (2015) DOI: 10.1371/journal.pgen.1005300

Physical damage can strongly affect plant growth, reducing the biomass of developing organs situated at a distance from wounds. These effects, previously studied in leaves, require the activation of jasmonate (JA) signalling. Using a novel assay involving repetitive cotyledon wounding in Arabidopsis seedlings, we uncovered a function of JA in suppressing cell division and elongation in roots. Regulatory JA signalling components were then manipulated to delineate their relative impacts on root growth. The new transcription factor mutant myc2-322B was isolated. In vitro transcription assays and whole-plant approaches revealed that myc2-322B is a dosage-dependent gain-of-function mutant that can amplify JA growth responses. Moreover, myc2-322B displayed extreme hypersensitivity to JA that totally suppressed root elongation. The mutation weakly reduced root growth in undamaged plants but, when the upstream negative regulator NINJA was genetically removed, myc2-322B powerfully repressed root growth through its effects on cell division and cell elongation. Furthermore, in a JA-deficient mutant background, ninja1 myc2-322B still repressed root elongation, indicating that it is possible to generate JA-responses in the absence of JA. We show that NINJA forms a broadly expressed regulatory layer that is required to inhibit JA signalling in the apex of roots grown under basal conditions. By contrast, MYC2, MYC3 and MYC4 displayed cell layer-specific localisations and MYC3 and MYC4 were expressed in mutually exclusive regions. In nature, growing roots are likely subjected to constant mechanical stress during soil penetration that could lead to JA production and subsequent detrimental effects on growth. Our data reveal how distinct negative regulatory layers, including both NINJA-dependent and -independent mechanisms, restrain JA responses to allow normal root growth. Mechanistic insights from this work underline the importance of mapping JA signalling components to specific cell types in order to understand and potentially engineer the growth reduction that follows physical damage.
Publikation

Gasperini, D.; Chauvin, A.; Acosta, I. F.; Kurenda, A.; Stolz, S.; Chételat, A.; Wolfender, J.-L.; Farmer, E. E. Axial and Radial Oxylipin Transport Plant Physiol 169, 2244-2254, (2015) DOI: 10.1104/pp.15.01104

Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes.
Publikation

Farmer, E. E.; Gasperini, D.; Acosta, I. F. The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding New Phytol 204, 282-288, (2014) DOI: 10.1111/nph.12897

Jasmonates are lipid mediators that control defence gene expression in response to wounding and other environmental stresses. These small molecules can accumulate at distances up to several cm from sites of damage and this is likely to involve cell‐to‐cell jasmonate transport. Also, and independently of jasmonate synthesis, transport and perception, different long‐distance wound signals that stimulate distal jasmonate synthesis are propagated at apparent speeds of several cm min–1 to tissues distal to wounds in a mechanism that involves clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes. A search for jasmonate synthesis enzymes that might decode these signals revealed LOX6, a lipoxygenase that is necessary for much of the rapid accumulation of jasmonic acid at sites distal to wounds. Intriguingly, the LOX6 promoter is expressed in a distinct niche of cells that are adjacent to mature xylem vessels, a location that would make these contact cells sensitive to the release of xylem water column tension upon wounding. We propose a model in which rapid axial changes in xylem hydrostatic pressure caused by wounding travel through the vasculature and lead to slower, radially dispersed pressure changes that act in a clade 3 GLR‐dependent mechanism to promote distal jasmonate synthesis.
IPB Mainnav Search