zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Wasternack, C.; Stenzel, I.; Hause, B.; Hause, G.; Kutter, C.; Maucher, H.; Neumerkel, J.; Feussner, I.; Miersch, O.; The wound response in tomato – Role of jasmonic acid J. Plant Physiol. 163, 297-306, (2006) DOI: 10.1016/j.jplph.2005.10.014

Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.
Publikation

Sharma, V. K.; Monostori, T.; Göbel, C.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R. R.; Hause, B.; Schulze, J.; Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature Phytochemistry 67, 264-276, (2006) DOI: 10.1016/j.phytochem.2005.11.009

Three chimeric gene constructs were designed comprising the full length cDNA of a lipoxygenase (LOX) from barley (LOX2:Hv:1) including its chloroplast targeting sequence (cTP) under control of either (1) CaMV35S- or (2) polyubiquitin-1-promoter, whereas the third plasmid contains 35S promoter and the cDNA without cTP. Transgenic barley plants overexpressing LOX2:Hv:1 were generated by biolistics of scutella from immature embryos. Transformation frequency for 35S::LOX with or without cTP was in a range known for barley particle bombardment, whereas for Ubi::cTP-LOX no transgenic plants were detected. In general, a high number of green plantlets selected on bialaphos became yellow and finally died either in vitro or after potting. All transgenic plants obtained were phenotypically indistinguishable from wild type plants and all of them set seeds. The corresponding protein (LOX-100) in transgenic T0 and T1 plants accumulated constitutively to similar levels as in the jasmonic acid methyl ester (JAME)-treated wild type plants. Moreover, LOX-100 was clearly detectable immunocytochemically within the chloroplasts of untreated T0 plants containing the LOX-100-cDNA with the chloroplast target sequence. In contrast, an exclusive localization of LOX-100 in the cytoplasm was detectable when the target sequence was removed. In comparison to sorbitol-treated wild type leaves, analysis of oxylipin profiles in T2 progenies showed higher levels of jasmonic acid (JA) for those lines that displayed elevated levels of LOX-100 in the chloroplasts and for those lines that harboured LOX-100 in the cytoplasm, respectively. The studies demonstrate for the first time the constitutive overexpression of a cDNA coding for a 13-LOX in a monocotyledonous species and indicate a link between the occurrence of LOX-100 and senescence.
Publikation

Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C.; Jasmonate Biosynthesis in Arabidopsis thaliana - Enzymes, Products, Regulation Plant Biol. 8, 297-306, (2006) DOI: 10.1055/s-2006-923935

Among the plant hormones jasmonic acid and related derivatives are known to mediate stress responses and several developmental processes. Biosynthesis, regulation, and metabolism of jasmonic acid in Arabidopsis thaliana are reviewed, including properties of mutants of jasmonate biosynthesis. The individual signalling properties of several jasmonates are described.
Publikation

De Nardi, B.; Dreos, R.; Del Terra, L.; Martellossi, C.; Asquini, E.; Tornincasa, P.; Gasperini, D.; Pacchioni, B.; Rathinavelu, R.; Pallavicini, A.; Graziosi, G.; Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance Genome 49, 1594-1605, (2006) DOI: 10.1139/g06-125

Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
IPB Mainnav Search