zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 14.

Bücher und Buchkapitel

Tissier, A.; Ziegler, J.; Vogt, T.; Specialized Plant Metabolites: Diversity and Biosynthesis (Krauss, G.-J. & Nies, D. H., eds.). 14-37, (2015) ISBN: 9783527686063 DOI: 10.1002/9783527686063.ch2

Plant secondary metabolites, also termed specialized plant metabolites, currently comprise more than 200 000 natural products that are all based on a few biosynthetic pathways and key primary metabolites. Some pathways like flavonoid and terpenoid biosynthesis are universally distributed in the plant kingdom, whereas others like alkaloid or cyanogenic glycoside biosynthesis are restricted to a limited set of taxa. Diversification is achieved by an array of mechanisms at the genetic and enzymatic level including gene duplications, substrate promiscuity of enzymes, cell‐specific regulatory systems, together with modularity and combinatorial aspects. Specialized metabolites reflect adaptations to a specific environment. The observed diversity illustrates the heterogeneity and multitude of ecological habitats and niches that plants have colonized so far and constitutes a reservoir of potential new metabolites that may provide adaptive advantage in the face of environmental changes. The code that connects the observed chemical diversity to this ecological diversity is largely unknown. One way to apprehend this diversity is to realize its tremendous plasticity and evolutionary potential. This chapter presents an overview of the most widespread and popular secondary metabolites, which provide a definite advantage to adapt to or to colonize a particular environment, making the boundary between the “primary” and the “secondary” old fashioned and blurry.
Publikation

Fellenberg, C.; Ziegler, J.; Handrick, V.; Vogt, T.; Polyamine homeostasis in wild type and phenolamide deficient Arabidopsis thaliana stamens Front. Plant Sci. 3, 180, (2012) DOI: 10.3389/fpls.2012.00180

Polyamines (PAs) like putrescine, spermidine, and spermine are ubiquitous polycationic molecules that occur in all living cells and have a role in a wide variety of biological processes. High amounts of spermidine conjugated to hydroxycinnamic acids are detected in the tryphine of Arabidopsis thaliana pollen grains. Tapetum localized spermidine hydroxycinnamic acid transferase (SHT) is essential for the biosynthesis of these anther specific tris-conjugated spermidine derivatives. Sht knockout lines show a strong reduction of hydroxycinnamic acid amides (HCAAs). The effect of HCAA-deficient anthers on the level of free PAs was measured by a new sensitive and reproducible method using 9-fluorenylmethyl chloroformate (FMOC) and fluorescence detection by HPLC. PA concentrations can be accurately determined even when very limited amounts of plant material, as in the case of A. thaliana stamens, are available. Analysis of free PAs in wild type stamens compared to sht deficient mutants and transcript levels of key PA biosynthetic genes revealed a highly controlled regulation of PA homeostasis in A. thaliana anthers.
Publikation

Fellenberg, C.; Milkowski, C.; Hause, B.; Lange, P.-R.; Böttcher, C.; Schmidt, J.; Vogt, T.; Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana Plant J. 56, 132-145, (2008) DOI: 10.1111/j.1365-313X.2008.03576.x

Cation‐ and S ‐adenosyl‐l ‐methionine (AdoMet)‐dependent plant natural product methyltransferases are referred to as CCoAOMTs because of their preferred substrate, caffeoyl coenzyme A (CCoA). The enzymes are encoded by a small family of genes, some of which with a proven role in lignin monomer biosynthesis. In Arabidopsis thaliana individual members of this gene family are temporally and spatially regulated. The gene At1g67990 is specifically expressed in flower buds, and is not detected in any other organ, such as roots, leaves or stems. Several lines of evidence indicate that the At1g67990 transcript is located in the flower buds, whereas the corresponding CCoAOMT‐like protein, termed AtTSM1, is located exclusively in the tapetum of developing stamen. Flowers of At1g67990 RNAi‐suppressed plants are characterized by a distinct flower chemotype with severely reduced levels of the N  ′,N  ′′‐ bis‐(5‐hydroxyferuloyl)‐N  ′′′‐sinapoylspermidine compensated for by N1 ,N5 ,N10 ‐tris‐(5‐hydroxyferuloyl)spermidine derivative, which is characterized by the lack of a single methyl group in the sinapoyl moiety. This severe change is consistent with the observed product profile of AtTSM1 for aromatic phenylpropanoids. Heterologous expression of the recombinant protein shows the highest activity towards a series of caffeic acid esters, but 5‐hydroxyferuloyl spermidine conjugates are also accepted substrates. The in vitro substrate specificity and the in vivo RNAi‐mediated suppression data of the corresponding gene suggest a role of this cation‐dependent CCoAOMT‐like protein in the stamen/pollen development of A. thaliana .
Publikation

Köck, M.; Groß, N.; Stenzel, I.; Hause, G.; Phloem-specific expression of the wound-inducible ribonuclease LE from tomato (Lycopersicon esculentum cv. Lukullus) Planta 219, 233-242, (2004) DOI: 10.1007/s00425-004-1227-4

Ribonuclease LE (RNaseLE) from tomato (Lycopersicon esculentum Mill. cv. Lukullus) belongs to the widespread RNase T2 family of ribonucleases. With the exception of S-RNases of the solanaceous self-incompatibility system the functions of other members of the RNase T2 family are only barely understood. Using a 2.6-kbp putative promoter sequence of RNaseLE in front of the uidA reporter gene, expression of β-glucuronidase in developing phloem tissue and, especially, in the meristematic and elongation zones at root tips was detected. The tissue-specific expression accords with the range of cis-acting elements detected in the RNaseLE promoter. RNaseLE mRNA was localized in developing phloem cells but not in mature phloem tissue, suggesting association of RNaseLE expression with phloem development. Histochemical staining of β-glucuronidase activity as well as detailed inspection of RNaseLE at mRNA, protein and enzyme activity levels revealed that the wound-induced expression of RNaseLE was also restricted to vascular tissue. RNaseLE transcript accumulation detected by in situ hybridization occurred preferentially in phloem and cambial cells of stem sections upon wounding. The data provide evidence for a role of RNaseLE in a tissue-specific wound response and in wound healing of tomato.
Publikation

Groß, N.; Wasternack, C.; Köck, M.; Wound-induced RNaseLE expression is jasmonate and systemin independent and occurs only locally in tomato (Lycopersicon esculentum cv. Lukullus) Phytochemistry 65, 1343-1350, (2004) DOI: 10.1016/j.phytochem.2004.04.036

Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.RNaseLE expression was analyzed by pharmacological studies of different tomato lines and upon wounding of leaves. The gene is only locally activated via a new type of wound-induced signaling pathway in a jasmonate/systemin-independent manner.
Publikation

Stenzel, I.; Ziethe, K.; Schurath, J.; Hertel, S. C.; Bosse, D.; Köck, M.; Differential expression of the LePS2 phosphatase gene family in response to phosphate availability, pathogen infection and during development Physiol. Plant. 118, 138-146, (2003) DOI: 10.1034/j.1399-3054.2003.00091.x

In this study, we report the cloning of the three‐member LePS2 gene family of acid phosphatases via subtractive screening of a cDNA library of Pi‐starved cultivated tomato cells (Lycopersicon esculentum Mill. cv. Lukullus). As members of the plant Pi‐starvation response, LePS2 genes were tightly regulated in cultivated cells and tomato seedlings by Pi availability. The LePS2 enzymes which are most likely expressed in the cytoplasma could be involved in processes that are accompanied by degradation of phosphorylated organic substrates. Independently from exogenous phosphate supply LePS2 expression was detected in tomato endosperm during germination. LePS2 genes were differentially induced after infection with the bacterial pathogen Pseudomonas syringae and in the early stages of flower development. Using RT–PCR it was found that the gene LePS2B was the most abundant transcript in phosphate‐depleted cells, but a reduced expression was determined in floral buds and it was not found during pathogen interaction. In this respect, it is interesting that the promoter sequences of the LePS2 genes are also divergent. LePS2 gene products may have functions in developmental processes which are restricted to distinct plant tissues or cell types.
Publikation

Schilling, S.; Manhart, S.; Hoffmann, T.; Ludwig, H.-H.; Wasternack, C.; Demuth, H.-U.; Substrate Specificity of Glutaminyl Cyclases from Plants and Animals Biol. Chem. 384, 1583-1592, (2003) DOI: 10.1515/BC.2003.175

Glutaminyl cyclases (QC) catalyze the intramolecular cyclization of N-terminal glutamine residues of peptides and proteins. For a comparison of the substrate specificity of human and papaya QC enzymes, a novel continuous assay was established by adapting an existing discontinuous method. Specificity constants (kcat/Km) of dipeptides and dipeptide surrogates were higher for plant QC, whereas the selectivity for oligopeptides was similar for both enzymes. However, only the specificity constants of mammalian QC were dependent on size and composition of the substrates. Specificity constants of both enzymes were equally pH-dependent in the acidic pH-region, revealing a pKa value identical to the pKa of the substrate, suggesting similarities in the substrate conversion mode. Accordingly, both QCs converted the L-?homoglutaminyl residue in the peptide H-?homoGln-Phe-Lys-Arg-Leu-Ala-NH2 and the glutaminyl residues of the branched peptide H-Gln-Lys(Gln)-Arg-Leu-Ala-NH2 as well as the partially cyclized peptide H-Gln-cyclo( N?-Lys-Arg-Pro-Ala-Gly-Phe). In contrast, only QC from C. papaya was able to cyclize a methylated glutamine residue, while this compound did not even inhibit human QC-catalysis, suggesting distinct substrate recognition pattern. The conversion of the potential physiological substrates gastrin, neurotensin and [GlN1]-fertilization promoting peptide indicates that human QC may play a key role in posttranslational modification of most if not all pGlu-containing hormones.
Publikation

Schilling, S.; Niestroj, A. J.; Rahfeld, J.-U.; Hoffmann, T.; Wermann, M.; Zunkel, K.; Wasternack, C.; Demuth, H.-U.; Identification of Human Glutaminyl Cyclase as a Metalloenzyme J. Biol. Chem. 278, 49773-49779, (2003) DOI: 10.1074/jbc.M309077200

Human glutaminyl cyclase (QC) was identified as a metalloenzyme as suggested by the time-dependent inhibition by the heterocyclic chelators 1,10-phenanthroline and dipicolinic acid. The effect of EDTA on QC catalysis was negligible. Inactivated enzyme could be fully restored by the addition of Zn2+ in the presence of equimolar concentrations of EDTA. Little reactivation was observed with Co2+ and Mn2+. Other metal ions such as K+, Ca2+, and Ni2+ were inactive under the same conditions. Additionally, imidazole and imidazole derivatives were identified as competitive inhibitors of QC. An initial structure activity-based inhibitor screening of imidazole-derived compounds revealed potent inhibition of QC by imidazole N-1 derivatives. Subsequent data base screening led to the identification of two highly potent inhibitors, 3-[3-(1H-imidazol-1-yl)propyl]-2-thioxoimidazolidin-4-one and 1,4-bis-(imidazol-1-yl)-methyl-2,5-dimethylbenzene, which exhibited respective Ki values of 818 ± 1 and 295 ± 5 nm. The binding properties of the imidazole derivatives were further analyzed by the pH dependence of QC inhibition. The kinetically obtained pKa values of 6.94 ± 0.02, 6.93 ± 0.03, and 5.60 ± 0.05 for imidazole, methylimidazole, and benzimidazole, respectively, match the values obtained by titrimetric pKa determination, indicating the requirement for an unprotonated nitrogen for binding to QC. Similarly, the pH dependence of the kinetic parameter Km for the QC-catalyzed conversion of H-Gln-7-ami-no-4-methylcoumarin also implies that only N-terminally unprotonated substrate molecules are bound to the active site of the enzyme, whereas turnover is not affected. The results reveal human QC as a metal-dependent transferase, suggesting that the active site-bound metal is a potential site for interaction with novel, highly potent competitive inhibitors.
Publikation

Schilling, S.; Hoffmann, T.; Rosche, F.; Manhart, S.; Wasternack, C.; Demuth, H.-U.; Heterologous Expression and Characterization of Human Glutaminyl Cyclase: Evidence for a Disulfide Bond with Importance for Catalytic Activity Biochemistry 41, 10849-10857, (2002) DOI: 10.1021/bi0260381

Glutaminyl cyclase (QC, EC 2.3.2.5) catalyzes the formation of pyroglutamate residues from glutamine at the N-terminus of peptides and proteins. In the current study, human QC was functionally expressed in the secretory pathway of Pichia pastoris, yielding milligram quantities after purification from the supernatant of a 5 L fermentation. Initial characterization studies of the recombinant QC using MALDI-TOF mass spectrometry revealed correct proteolytic processing and N-glycosylation at both potential sites with similar 2 kDa extensions. CD spectral analysis indicated a high α-helical content, which contrasts with plant QC from Carica papaya. The kinetic parameters for conversion of H-Gln-Tyr-Ala-OH by recombinant human QC were almost identical to those previously reported for purified bovine pituitary QC. However, the results obtained for conversion of H-Gln-Gln-OH, H-Gln-NH2, and H-Gln-AMC were found to be contradictory to previous studies on human QC expressed intracellularly in E. coli. Expression of QC in E. coli showed that approximately 50% of the protein did not contain a disulfide bond that is present in the entire QC expressed in P. pastoris. Further, the enzyme was consistently inactivated by treatment with 15 mM DTT, whereas deglycosylation had no effect on enzymatic activity. Analysis of the fluorescence spectra of the native, reduced, and unfolded human QC point to a conformational change of the protein upon treatment with DTT. In terms of the different enzymatic properties, the consequences of QC expression in different environments are discussed.
Publikation

Schilling, S.; Hoffmann, T.; Wermann, M.; Heiser, U.; Wasternack, C.; Demuth, H.-U.; Continuous Spectrometric Assays for Glutaminyl Cyclase Activity Anal. Biochem. 303, 49-56, (2002) DOI: 10.1006/abio.2001.5560

The enzymatic conversion of one chromogenic substrate, -glutamine-p-nitroanilide, and two fluorogenic substrates, -glutaminyl-2-naphthylamide and -glutaminyl-4-methylcoumarinylamide, into their respective pyroglutamic acid derivatives by glutaminyl cyclase (QC) was estimated by introducing a new coupled assay using pyroglutamyl aminopeptidase as the auxiliary enzyme. For the purified papaya QC, the kinetic parameters were found to be in the range of those previously reported for other glutaminyl peptides, such as Gln-Gln, Gln-Ala, or Gln-tert-butyl ester. The assay can be performed in the presence of ammonia up to a concentration of 50 mM. Increasing ionic strength, e.g., potassium chloride up to 300 mM, resulted in an increase in enzymatic activity of about 20%. This is the first report of a fast, continuous, and reliable determination of QC activity, even in the presence of ammonium ions, during the course of protein purification and enzymatic analysis.
IPB Mainnav Search