zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 15.

Bücher und Buchkapitel

Quint, M.; Lübberstedt, T.; Application of resistance gene analogs in breeding for virus resistance Plant Pathogens Series 6, (2008)

0
Publikation

Frisch, M.; Quint, M.; Lübberstedt, T.; Melchinger, A. E.; Duplicate marker loci can result in incorrect locus orders on linkage maps Theor. Appl. Genet. 109, 305-316, (2004) DOI: 10.1007/s00122-003-1578-4

Genetic linkage maps, constructed from multi-locus recombination data, are the basis for many applications of molecular markers. For the successful employment of a linkage map, it is essential that the linear order of loci on a chromosome is correct. The objectives of this theoretical study were to (1) investigate the occurrence of incorrect locus orders caused by duplicate marker loci, (2) develop a statistical test for the detection of duplicate markers, and (3) discuss the implications for practical applications of linkage maps. We derived conditions, under which incorrect locus orders do or do not occur with duplicate marker loci for the general case of n markers on a chromosome in a BC1 mapping population. We further illustrated these conditions numerically for the special case of four markers. On the basis of the extent of segregation distortion, an exact test for the presence of duplicate marker loci was suggested and its power was investigated numerically. Incorrect locus orders caused by duplicate marker loci can (1) negatively affect the assignment of target genes to chromosome regions in a map-based cloning experiment, (2) hinder indirect selection for a favorable allele at a quantitative trait locus, and (3) decrease the efficiency of reducing the length of the chromosome segment attached to a target gene in marker-assisted backcrossing.
Publikation

Dußle, C.; Quint, M.; Melchinger, A.; Xu, M.; Lübberstedt, T.; Saturation of two chromosome regions conferring resistance to SCMV with SSR and AFLP markers by targeted BSA Theor. Appl. Genet. 106, 485-493, (2003) DOI: 10.1007/s00122-002-1107-x

Quantitative trait loci (QTLs) and bulked segregant analyses (BSA) identified the major genes Scmv1 on chromosome 6 and Scmv2 on chromosome 3, conferring resistance against sugarcane mosaic virus (SCMV) in maize. Both chromosome regions were further enriched for SSR and AFLP markers by targeted bulked segregant analysis (tBSA) in order to identify and map only markers closely linked to either Scmv1 or Scmv2. For identification of markers closely linked to the target genes, symptomless individuals of advanced backcross generations BC5 to BC9 were employed. All AFLP markers, identified by tBSA using 400 EcoRI/MseI primer combinations, mapped within both targeted marker intervals. Fourteen SSR and six AFLP markers mapped to the Scmv1 region. Eleven SSR and 18 AFLP markers were located in the Scmv2 region. Whereas the linear order of SSR markers and the window size for the Scmv2 region fitted well with publicly available genetic maps, map distances and window size differed substantially for the Scmv1 region on chromosome 6. A possible explanation for the observed discrepancies is the presence of two closely linked resistance genes in the Scmv1 region.
Publikation

Quint, M.; Dußle, C. M.; Melchinger, A. E.; Lübberstedt, T.; Identification of genetically linked RGAs by BAC screening in maize and implications for gene cloning, mapping and MAS Theor. Appl. Genet. 106, 1171-1177, (2003) DOI: 10.1007/s00122-002-1105-z

The resistance gene analogue (RGA) pic19 in maize, a candidate for sugarcane mosaic virus (SCMV) resistance gene (R gene) Scmv1, was used to screen a maize BAC library to identify homologous sequences in the maize genome and to investigate their genomic organisation. Fifteen positive BAC clones were identified and could be classified into five physically independent contigs consisting of overlapping clones. Genetic mapping clustered three contigs into the same genomic region as Scmv1 on chromosome 6S. The two remaining contigs mapped to the same region as a QTL for SCMV resistance on chromosome 1. Thus, RGAs mapping to a target region can be successfully used to identify further-linked candidate sequences. The pic19 homologous sequences of these clones revealed a sequence similarity of 94–98% on the nucleotide level. The high sequence similarity reveals potential problems for the use of RGAs as molecular markers. Their application in marker-assisted selection (MAS) and the construction of high-density genetic maps is complicated by the existence of closely linked homologues resulting in 'ghost' marker loci analogous to 'ghost' QTLs. Therefore, implementation of genomic library screening, including genetic mapping of potential homologues, seems necessary for the safe application of RGA markers in MAS and gene isolation.
Publikation

Schilling, S.; Manhart, S.; Hoffmann, T.; Ludwig, H.-H.; Wasternack, C.; Demuth, H.-U.; Substrate Specificity of Glutaminyl Cyclases from Plants and Animals Biol. Chem. 384, 1583-1592, (2003) DOI: 10.1515/BC.2003.175

Glutaminyl cyclases (QC) catalyze the intramolecular cyclization of N-terminal glutamine residues of peptides and proteins. For a comparison of the substrate specificity of human and papaya QC enzymes, a novel continuous assay was established by adapting an existing discontinuous method. Specificity constants (kcat/Km) of dipeptides and dipeptide surrogates were higher for plant QC, whereas the selectivity for oligopeptides was similar for both enzymes. However, only the specificity constants of mammalian QC were dependent on size and composition of the substrates. Specificity constants of both enzymes were equally pH-dependent in the acidic pH-region, revealing a pKa value identical to the pKa of the substrate, suggesting similarities in the substrate conversion mode. Accordingly, both QCs converted the L-?homoglutaminyl residue in the peptide H-?homoGln-Phe-Lys-Arg-Leu-Ala-NH2 and the glutaminyl residues of the branched peptide H-Gln-Lys(Gln)-Arg-Leu-Ala-NH2 as well as the partially cyclized peptide H-Gln-cyclo( N?-Lys-Arg-Pro-Ala-Gly-Phe). In contrast, only QC from C. papaya was able to cyclize a methylated glutamine residue, while this compound did not even inhibit human QC-catalysis, suggesting distinct substrate recognition pattern. The conversion of the potential physiological substrates gastrin, neurotensin and [GlN1]-fertilization promoting peptide indicates that human QC may play a key role in posttranslational modification of most if not all pGlu-containing hormones.
Publikation

Schilling, S.; Niestroj, A. J.; Rahfeld, J.-U.; Hoffmann, T.; Wermann, M.; Zunkel, K.; Wasternack, C.; Demuth, H.-U.; Identification of Human Glutaminyl Cyclase as a Metalloenzyme J. Biol. Chem. 278, 49773-49779, (2003) DOI: 10.1074/jbc.M309077200

Human glutaminyl cyclase (QC) was identified as a metalloenzyme as suggested by the time-dependent inhibition by the heterocyclic chelators 1,10-phenanthroline and dipicolinic acid. The effect of EDTA on QC catalysis was negligible. Inactivated enzyme could be fully restored by the addition of Zn2+ in the presence of equimolar concentrations of EDTA. Little reactivation was observed with Co2+ and Mn2+. Other metal ions such as K+, Ca2+, and Ni2+ were inactive under the same conditions. Additionally, imidazole and imidazole derivatives were identified as competitive inhibitors of QC. An initial structure activity-based inhibitor screening of imidazole-derived compounds revealed potent inhibition of QC by imidazole N-1 derivatives. Subsequent data base screening led to the identification of two highly potent inhibitors, 3-[3-(1H-imidazol-1-yl)propyl]-2-thioxoimidazolidin-4-one and 1,4-bis-(imidazol-1-yl)-methyl-2,5-dimethylbenzene, which exhibited respective Ki values of 818 ± 1 and 295 ± 5 nm. The binding properties of the imidazole derivatives were further analyzed by the pH dependence of QC inhibition. The kinetically obtained pKa values of 6.94 ± 0.02, 6.93 ± 0.03, and 5.60 ± 0.05 for imidazole, methylimidazole, and benzimidazole, respectively, match the values obtained by titrimetric pKa determination, indicating the requirement for an unprotonated nitrogen for binding to QC. Similarly, the pH dependence of the kinetic parameter Km for the QC-catalyzed conversion of H-Gln-7-ami-no-4-methylcoumarin also implies that only N-terminally unprotonated substrate molecules are bound to the active site of the enzyme, whereas turnover is not affected. The results reveal human QC as a metal-dependent transferase, suggesting that the active site-bound metal is a potential site for interaction with novel, highly potent competitive inhibitors.
Publikation

Quint, M.; Mihaljevic, R.; Dussle, C.; Xu, M.; Melchinger, A.; Lübberstedt, T.; Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize Theor. Appl. Genet. 105, 355-363, (2002) DOI: 10.1007/s00122-002-0953-x

Three previously published resistance gene analogues (RGAs), pic13, pic21 and pic19, were mapped in relation to sugarcane mosaic virus (SCMV) resistance genes (Scmv1, Scmv2) in maize. We cloned these RGAs from six inbreds including three SCMV-resistant lines (D21, D32, FAP1360A) and three SCMV-susceptible lines (D145, D408, F7). Pairwise sequence alignments among the six inbreds revealed a frequency of one single nucleotide polymorphism (SNP) per 33 bp for the three RGAs, indicating a high degree of polymorphism and a high probability of success in converting RGAs into codominant cleaved amplified polymorphic sequence (CAPS) markers compared to other sequences. SNPs were used to develop CAPS markers for mapping of the three RGAs in relation to Scmv1 (chromosome 6) and Scmv2 (chromosome 3), and for pedigree analyses of resistant inbred lines. By genetic mapping pic21 was shown to be different from Scmv2, whereas pic19 and pic13 are still candidates for Scmv1 and Scmv2, respectively, due to genetic mapping and consistent restriction patterns of ancestral lines.
Publikation

Dussle, C.; Quint, M.; Xu, M.; Melchinger, A.; Lübberstedt, T.; Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR-based markers Theor. Appl. Genet. 105, 1190-1195, (2002) DOI: 10.1007/s00122-002-0964-7

In a previous study, bulked segregant analysis with amplified fragment length polymorphisms (AFLPs) identified several markers closely linked to the sugarcane mosaic virus resistance genes Scmv1 on chromosome 6 and Scmv2 on chromosome 3. Six AFLP markers (E33M61-2, E33M52, E38M51, E82M57, E84M59 and E93M53) were located on chromosome 3 and two markers (E33M61-1 and E35M62-1) on chromosome 6. Our objective in the present study was to sequence the respective AFLP bands in order to convert these dominant markers into more simple and reliable polymerase chain reaction (PCR)-based sequence-tagged site markers. Six AFLP markers resulted either in complete identical sequences between the six inbreds investigated in this study or revealed single nucleotide polymorphisms within the inbred lines and were, therefore, not converted. One dominant AFLP marker (E35M62-1) was converted into an insertion/deletion (indel) marker and a second AFLP marker (E33M61-2) into a cleaved amplified polymorphic sequence marker. Mapping of both converted PCR-based markers confirmed their localization to the same chromosome region (E33M61-2 on chromosome 3; E35M62-1 on chromosome 6) as the original AFLP markers. Thus, these markers will be useful for marker-assisted selection and facilitate map-based cloning of SCMV resistance genes.
Publikation

Schilling, S.; Hoffmann, T.; Rosche, F.; Manhart, S.; Wasternack, C.; Demuth, H.-U.; Heterologous Expression and Characterization of Human Glutaminyl Cyclase: Evidence for a Disulfide Bond with Importance for Catalytic Activity Biochemistry 41, 10849-10857, (2002) DOI: 10.1021/bi0260381

Glutaminyl cyclase (QC, EC 2.3.2.5) catalyzes the formation of pyroglutamate residues from glutamine at the N-terminus of peptides and proteins. In the current study, human QC was functionally expressed in the secretory pathway of Pichia pastoris, yielding milligram quantities after purification from the supernatant of a 5 L fermentation. Initial characterization studies of the recombinant QC using MALDI-TOF mass spectrometry revealed correct proteolytic processing and N-glycosylation at both potential sites with similar 2 kDa extensions. CD spectral analysis indicated a high α-helical content, which contrasts with plant QC from Carica papaya. The kinetic parameters for conversion of H-Gln-Tyr-Ala-OH by recombinant human QC were almost identical to those previously reported for purified bovine pituitary QC. However, the results obtained for conversion of H-Gln-Gln-OH, H-Gln-NH2, and H-Gln-AMC were found to be contradictory to previous studies on human QC expressed intracellularly in E. coli. Expression of QC in E. coli showed that approximately 50% of the protein did not contain a disulfide bond that is present in the entire QC expressed in P. pastoris. Further, the enzyme was consistently inactivated by treatment with 15 mM DTT, whereas deglycosylation had no effect on enzymatic activity. Analysis of the fluorescence spectra of the native, reduced, and unfolded human QC point to a conformational change of the protein upon treatment with DTT. In terms of the different enzymatic properties, the consequences of QC expression in different environments are discussed.
Publikation

Schilling, S.; Hoffmann, T.; Wermann, M.; Heiser, U.; Wasternack, C.; Demuth, H.-U.; Continuous Spectrometric Assays for Glutaminyl Cyclase Activity Anal. Biochem. 303, 49-56, (2002) DOI: 10.1006/abio.2001.5560

The enzymatic conversion of one chromogenic substrate, -glutamine-p-nitroanilide, and two fluorogenic substrates, -glutaminyl-2-naphthylamide and -glutaminyl-4-methylcoumarinylamide, into their respective pyroglutamic acid derivatives by glutaminyl cyclase (QC) was estimated by introducing a new coupled assay using pyroglutamyl aminopeptidase as the auxiliary enzyme. For the purified papaya QC, the kinetic parameters were found to be in the range of those previously reported for other glutaminyl peptides, such as Gln-Gln, Gln-Ala, or Gln-tert-butyl ester. The assay can be performed in the presence of ammonia up to a concentration of 50 mM. Increasing ionic strength, e.g., potassium chloride up to 300 mM, resulted in an increase in enzymatic activity of about 20%. This is the first report of a fast, continuous, and reliable determination of QC activity, even in the presence of ammonium ions, during the course of protein purification and enzymatic analysis.
IPB Mainnav Search