zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Iglesias, M. J.; Terrile, M. C.; Correa-Aragunde, N.; Colman, S. L.; Izquierdo-Álvarez, A.; Fiol, D. F.; París, R.; Sánchez-López, N.; Marina, A.; Calderón Villalobos, L. I. A.; Estelle, M.; Lamattina, L.; Martínez-Ruiz, A.; Casalongué, C. A.; Regulation of SCFTIR1/AFBs E3 ligase assembly by S-nitrosylation of Arabidopsis SKP1-like1 impacts on auxin signaling Redox Biol. 18, 200-210, (2018) DOI: 10.1016/j.redox.2018.07.003

The F-box proteins (FBPs) TIR1/AFBs are the substrate recognition subunits of SKP1–cullin–F-box (SCF) ubiquitin ligase complexes and together with Aux/IAAs form the auxin co-receptor. Although tremendous knowledge on auxin perception and signaling has been gained in the last years, SCFTIR1/AFBs complex assembly and stabilization are emerging as new layers of regulation. Here, we investigated how nitric oxide (NO), through S-nitrosylation of ASK1 is involved in SCFTIR1/AFBs assembly. We demonstrate that ASK1 is S-nitrosylated and S-glutathionylated in cysteine (Cys) 37 and Cys118 residues in vitro. Both, in vitro and in vivo protein-protein interaction assays show that NO enhances ASK1 binding to CUL1 and TIR1/AFB2, required for SCFTIR1/AFB2 assembly. In addition, we demonstrate that Cys37 and Cys118 are essential residues for proper activation of auxin signaling pathway in planta. Phylogenetic analysis revealed that Cys37 residue is only conserved in SKP proteins in Angiosperms, suggesting that S-nitrosylation on Cys37 could represent an evolutionary adaption for SKP1 function in flowering plants. Collectively, these findings indicate that multiple events of redox modifications might be part of a fine-tuning regulation of SCFTIR1/AFBs for proper auxin signal transduction.
Publikation

Terrile, M. C.; París, R.; Calderón-Villalobos, L. I. A.; Iglesias, M. J.; Lamattina, L.; Estelle, M.; Casalongué, C. A.; Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 auxin receptor Plant J. 70, 492-500, (2011) DOI: 10.1111/j.1365-313X.2011.04885.x

Previous studies have demonstrated that auxin (indole‐3‐acetic acid) and nitric oxide (NO) are plant growth regulators that coordinate several plant physiological responses determining root architecture. Nonetheless, the way in which these factors interact to affect these growth and developmental processes is not well understood. The Arabidopsis thaliana F‐box proteins TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F‐BOX (TIR1/AFB) are auxin receptors that mediate degradation of AUXIN/INDOLE‐3‐ACETIC ACID (Aux/IAA) repressors to induce auxin‐regulated responses. A broad spectrum of NO‐mediated protein modifications are known in eukaryotic cells. Here, we provide evidence that NO donors increase auxin‐dependent gene expression while NO depletion blocks Aux/IAA protein degradation. NO also enhances TIR1‐Aux/IAA interaction as evidenced by pull‐down and two‐hybrid assays. In addition, we provide evidence for NO‐mediated modulation of auxin signaling through S‐nitrosylation of the TIR1 auxin receptor. S‐nitrosylation of cysteine is a redox‐based post‐translational modification that contributes to the complexity of the cellular proteome. We show that TIR1 C140 is a critical residue for TIR1–Aux/IAA interaction and TIR1 function. These results suggest that TIR1 S‐nitrosylation enhances TIR1–Aux/IAA interaction, facilitating Aux/IAA degradation and subsequently promoting activation of gene expression. Our findings underline the importance of NO in phytohormone signaling pathways.
IPB Mainnav Search