zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Stress- und Entwicklungsbiologie

Sortieren nach: sort ascending Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 80.

Publikation

Vörös, K.; Feussner, I.; Kühn, H.; Lee, J.; Graner, A.; Löbler, M.; Parthier, B.; Wasternack, C.; Characterization of a methyljasmonate-inducible lipoxygenase from barley (Hordeum vulgare cv. Salome) leaves Eur. J. Biochem. 251, 36-44, (1998) DOI: 10.1046/j.1432-1327.1998.2510036.x

We found three methyl jasmonate−induced lipoxygenases with molecular masses of 92 kDa, 98 kDa, and 100 kDa (LOX‐92, ‐98 and ‐100) [Feussner, I., Hause, B., Vörös, K., Parthier, B. & Wasternack, C. (1995) Plant J. 7 , 949−957]. At least two of them (LOX‐92 and LOX‐100), were shown to be localized within chloroplasts of barley leaves. Here, we describe the isolation of a cDNA (3073 bp) coding for LOX‐100, a protein of 936 amino acid residues and a molecular mass of 106 kDa. By sequence comparison this lipoxygenase could be identified as LOX2‐type lipoxygenase and was therefore designated LOX2 : Hv : 1 . The recombinant lipoxygenase was expressed in Escherichia coli and characterized as linoleate 13‐LOX and arachidonate 15‐LOX, respectively. The enzyme exhibited a pH optimum around pH 7.0 and a moderate substrate preference for linoleic acid. The gene was transiently expressed after exogenous application of jasmonic acid methyl ester with a maximum between 12 h and 18 h. Its expression was not affected by exogenous application of abscisic acid. Also a rise of endogenous jasmonic acid resulting from sorbitol stress did not induce LOX2 : Hv : 1 , suggesting a separate signalling pathway compared with other jasmonate‐induced proteins of barley. The properties of LOX2 : Hv : 1 are discussed in relation to its possible involvement in jasmonic acid biosynthesis and other LOX forms of barley identified so far.
Publikation

Lee, J.; Klüsener, B.; Tsiamis, G.; Stevens, C.; Neyt, C.; Tampakaki, A. P.; Panopoulos, N. J.; Nöller, J.; Weiler, E. W.; Cornelis, G. R.; Mansfield, J. W.; Nürnberger, T.; HrpZPsph from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro Proc. Natl. Acad. Sci. U.S.A. 98, 289-294, (2001) DOI: 10.1073/pnas.98.1.289

The hrp gene clusters of plant pathogenic bacteria control pathogenicity on their host plants and ability to elicit the hypersensitive reaction in resistant plants. Some hrp gene products constitute elements of the type III secretion system, by which effector proteins are exported and delivered into plant cells. Here, we show that the hrpZ gene product from the bean halo-blight pathogen, Pseudomonas syringae pv. phaseolicola (HrpZPsph), is secreted in an hrp-dependent manner in P. syringae pv. phaseolicola and exported by the type III secretion system in the mammalian pathogen Yersinia enterocolitica. HrpZPsph was found to associate stably with liposomes and synthetic bilayer membranes. Under symmetric ionic conditions, addition of 2 nM of purified recombinant HrpZPsph to the cis compartment of planar lipid bilayers provoked an ion current with a large unitary conductivity of 207 pS. HrpZPsph-related proteins from P. syringae pv. tomato or syringae triggered ion currents similar to those stimulated by HrpZPsph. The HrpZPsph-mediated ion-conducting pore was permeable for cations but did not mediate fluxes of Cl−. Such pore-forming activity may allow nutrient release and/or delivery of virulence factors during bacterial colonization of host plants.
Publikation

Lee, J.; Klessig, D. F.; Nürnberger, T.; A Harpin Binding Site in Tobacco Plasma Membranes Mediates Activation of the Pathogenesis-Related Gene HIN1 Independent of Extracellular Calcium but Dependent on Mitogen-Activated Protein Kinase Activity Plant Cell 13, 1079-1093, (2001) DOI: 10.1105/tpc.13.5.1079

Harpin from the bean halo-blight pathogen Pseudomonas syringae pv phaseolicola (harpinPsph) elicits the hypersensitive response and the accumulation of pathogenesis-related gene transcripts in the nonhost plant tobacco. Here, we report the characterization of a nonproteinaceous binding site for harpinPsph in tobacco plasma membranes, which is assumed to mediate the activation of plant defense responses in a receptor-like manner. Binding of 125I-harpinPsph to tobacco microsomal membranes (dissociation constant = 425 nM) and protoplasts (dissociation constant = 380 nM) was specific, reversible, and saturable. A close correlation was found between the abilities of harpinPsph fragments to elicit the transcript accumulation of the pathogenesis-related tobacco gene HIN1 and to compete for binding of 125I-harpinPsph to its binding site. Another elicitor of the hypersensitive response and HIN1 induction in tobacco, the Phytophthora megasperma–derived β-elicitin β-megaspermin, failed to bind to the putative harpinPsph receptor. In contrast to activation by β-megaspermin, harpinPsph-induced activation of the 48-kD salicylic acid–responsive mitogen-activated protein kinase (MAPK) and HIN1 transcript accumulation were independent of extracellular calcium. Moreover, use of the MAPK kinase inhibitor U0126 revealed that MAPK activity was essential for pathogenesis-related gene expression in harpinPsph-treated tobacco cells. Thus, a receptor-mediated MAPK-dependent signaling pathway may mediate the activation of plant defense responses induced by harpinPsph.
Publikation

Varet, A.; Parker, J.; Tornero, P.; Nass, N.; Nürnberger, T.; Dangl, J. L.; Scheel, D.; Lee, J.; NHL25 and NHL3, Two NDR1/HIN1-Like Genes in Arabidopsis thaliana with Potential Role(s) in Plant Defense Mol. Plant Microbe Interact. 15, 608-616, (2002) DOI: 10.1094/MPMI.2002.15.6.608

The Arabidopsis genome contains 28 genes with sequence homology to the Arabidopsis NDR1 gene and the tobacco HIN1 gene. Expression analysis of eight of these genes identified two (NHL25 and NHL3 for NDR1/HIN1-like) that show pathogen-dependent mRNA accumulation. Transcripts did not accumulate during infection with virulent Pseudomonas syringae pv. tomato DC3000 but did accumulate specifically when the bacteria carried any of the four avirulence genes avrRpm1, avrRpt2, avrB, or avrRps4. Furthermore, expression of avrRpt2 in plants containing the corresponding resistance gene, RPS2, was sufficient to induce transcript accumulation. However, during infection with an avirulent oomycete, Peronospora parasitica isolate Cala-2, only NHL25 expression was reproducibly induced. Salicylic acid (SA) treatment can induce expression of NHL25 and NHL3. Studies performed on nahG plants showed that, during interaction with avirulent bacteria, only the expression of NHL25 but not that of NHL3 was affected. This suggests involvement of separate SA-dependent and SA-independent pathways, respectively, in the transcriptional activation of these genes. Bacteria-induced gene expression was not abolished in ethylene- (etr1-3 and ein2-1) and jasmonate- (coi1-1) insensitive mutants or in mutants impaired in disease resistance (ndr1-1 and pad4-1). Interestingly, NHL3 transcripts accumulated after infiltration with the avirulent hrcC mutant of Pseudomonas syringae pv. tomato DC3000 and nonhost bacteria but not with the virulent Pseudomonas syringae pv. tomato DC3000, suggesting that virulent bacteria may suppress NHL3 expression during pathogenesis. Hence, the expression patterns and sequence homology to NDR1 and HIN1 suggest one or more potential roles for these genes in plant resistance.
Publikation

Lee, J.; Rudd, J. J.; Calcium-dependent protein kinases: versatile plant signalling components necessary for pathogen defence Trends Plant Sci. 7, 97-98, (2002) DOI: 10.1016/S1360-1385(02)02229-X

Plant stress adaptation often uses changes in cytosolic Ca2+ to bring about responses via changing the activity of Ca2+-sensor proteins including Ca2+-dependent protein kinases (CDPK). The activity of a tobacco CDPK(s) is essential for elicitation of the hypersensitive reaction, a typical plant defence response. Moreover, it is becoming apparent that CDPKs might also facilitate cross-talk between different Ca2+-mediated stress signalling pathways.
Publikation

Brunner, F.; Rosahl, S.; Lee, J.; Rudd, J. J.; Geiler, C.; Kauppinen, S.; Rasmussen, G.; Scheel, D.; Nürnberger, T.; Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases EMBO J. 21, 6681-6688, (2002) DOI: 10.1093/emboj/cdf667

Innate immunity, an ancient form of defense against microbial infection, is well described for animals and is also suggested to be important for plants. Discrimination from self is achieved through receptors that recognize pathogen‐associated molecular patterns (PAMPs) not found in the host. PAMPs are evolutionarily conserved structures which are functionally important and, thus, not subject to frequent mutation. Here we report that the previously described peptide elicitor of defense responses in parsley, Pep‐13, constitutes a surface‐exposed fragment within a novel calcium‐dependent cell wall transglutaminase (TGase) from Phytophthora sojae . TGase transcripts and TGase activity are detectable in all Phytophthora species analyzed, among which are some of the most destructive plant pathogens. Mutational analysis within Pep‐13 identified the same amino acids indispensable for both TGase and defense‐eliciting activity. Pep‐13, conserved among Phytophthora TGases, activates defense in parsley and potato, suggesting its function as a genus‐specific recognition determinant for the activation of plant defense in host and non‐host plants. In summary, plants may recognize PAMPs with characteristics resembling those known to trigger innate immune responses in animals.
Publikation

Kroj, T.; Rudd, J. J.; Nürnberger, T.; Gäbler, Y.; Lee, J.; Scheel, D.; Mitogen-activated Protein Kinases Play an Essential Role in Oxidative Burst-independent Expression of Pathogenesis-related Genes in Parsley J. Biol. Chem. 278, 2256-2264, (2003) DOI: 10.1074/jbc.M208200200

Plants are continuously exposed to attack by potential phytopathogens. Disease prevention requires pathogen recognition and the induction of a multifaceted defense response. We are studying the non-host disease resistance response of parsley to the oomycete, Phytophthora sojae using a cell culture-based system. Receptor-mediated recognition of P. sojae may be achieved through a thirteen amino acid peptide sequence (Pep-13) present within an abundant cell wall transglutaminase. Following recognition of this elicitor molecule, parsley cells mount a defense response, which includes the generation of reactive oxygen species (ROS) and transcriptional activation of genes encoding pathogenesis-related (PR) proteins or enzymes involved in the synthesis of antimicrobial phytoalexins. Treatment of parsley cells with the NADPH oxidase inhibitor, diphenylene iodonium (DPI), blocked both Pep-13-induced phytoalexin production and the accumulation of transcripts encoding enzymes involved in their synthesis. In contrast, DPI treatment had no effect upon Pep-13-induced PRgene expression, suggesting the existence of an oxidative burst-independent mechanism for the transcriptional activation ofPR genes. The use of specific antibodies enabled the identification of three parsley mitogen-activated protein kinases (MAPKs) that are activated within the signal transduction pathway(s) triggered following recognition of Pep-13. Other environmental challenges failed to activate these kinases in parsley cells, suggesting that their activation plays a key role in defense signal transduction. Moreover, by making use of a protoplast co-transfection system overexpressing wild-type and loss-of-function MAPK mutants, we show an essential role for post-translational phosphorylation and activation of MAPKs for oxidative burst-independentPR promoter activation.
Publikation

Varet, A.; Hause, B.; Hause, G.; Scheel, D.; Lee, J.; The Arabidopsis NHL3 Gene Encodes a Plasma Membrane Protein and Its Overexpression Correlates with Increased Resistance to Pseudomonas syringae pv. tomato DC3000 Plant Physiol. 132, 2023-2033, (2003) DOI: 10.1104/pp.103.020438

The Arabidopsis genome contains a family of NDR1/HIN1-like (NHL) genes that show homology to the nonrace-specific disease resistance (NDR1) and the tobacco (Nicotiana tabacum) harpin-induced (HIN1) genes. NHL3 is a pathogen-responsive member of this NHL gene family that is potentially involved in defense. In independent transgenic NHL3-overexpressing plant lines, a clear correlation between increased resistance to virulent Pseudomonas syringae pv. tomato DC3000 and enhanced NHL3 transcript levels was seen. These transgenic plants did not show enhanced pathogenesis-related gene expression or reactive oxygen species accumulation. Biochemical and localization experiments were performed to assist elucidation of how NHL3 may confer enhanced disease resistance. Gene constructs expressing amino-terminal c-myc-tagged or carboxyl-terminal hemagglutinin epitope (HA)-tagged NHL3 demonstrated membrane localization in transiently transformed tobacco leaves. Stable Arabidopsis transformants containing the NHL3-HA construct corroborated the findings observed in tobacco. The detected immunoreactive proteins were 10 kD larger than the calculated size and could be partially accounted for by the glycosylation state. However, the expected size was not attained with deglycosylation, suggesting possibly additional posttranslational modification. Detergent treatment, but not chemicals used to strip membrane-associated proteins, could displace the immunoreactive signal from microsomal fractions, showing that NHL3 is tightly membrane associated. Furthermore, immunofluorescence and immunogold labeling, coupled with two-phase partitioning techniques, revealed plasma membrane localization of NHL3-HA. This subcellular localization of NHL3 positions it at an initial contact site to pathogens and may be important in facilitating interception of pathogen-derived signals.
Publikation

Scheel, D.; Handmann, F.; Lee, J.; Rudd, J. J.; Zinecker, H.; Oxidative burst in plant defense Free Radic. Res. 37, 5, (2003)

0
Bücher und Buchkapitel

Lee, J.; Nürnberger, T.; Is Pore Formation Activity of HrpZ Required for Defence Activation in Plant Cells? 165-173, (2003) DOI: 10.1007/978-94-017-0133-4_18

The HrpZ gene product, harpin, is an export substrate of the type III secretion system of phytopathogenic Pseudomonas syringae. The role of this protein in pathogenesis is largely unknown. We previously determined that HrpZ binds to lipids and can form cation pores in synthetic lipid bilayers. Such pore-forming activity may allow nutrient release during bacterial colonisation of host plants. In addition. HrpZ is known to trigger plant defence responses in a variety of plants, such as tobacco. We have previously also characterised a binding site in tobacco plasma membranes that likely mediates HrpZ-induced defence responses. In order to reconcile these findings, we pose the question as to whether the activation of plant defence responses by HrpZ is mediated through a “classical” receptor perception mode or if plant membrane perturbation through the inherent pore-forming activity of HrpZ may induce defence responses. As defence in parsley cells can be induced both in a receptor-mediated manner or through ionophores these cells served as an ideal system for our analysis. We first performed ligand binding studies to characterise the presence of a binding site/receptor. We further digested HrpZ with endopeptidases and used subfragments of HrpZ to assess the elicitor-active domain of HrpZ. A C-terminal region of HrpZ appears to be sufficient to elicit plant defence responses. A novel assay involving dye-loaded liposomes was developed to validate previous electrophysiological findings on HrpZ-mediated cation pore formation. More importantly, this assay was used to establish if the elicitor-active C-terminal fragment of HrpZ could form pores. Our findings suggest that the structural requirements for ion pore formation and activation of plant defence responses by HrpZ are different. Thus, ion pore formation alone may not explain the activation of plant defence by HrpZ.
IPB Mainnav Search