zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Stress- und Entwicklungsbiologie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Westphal, L.; Strehmel, N.; Eschen-Lippold, L.; Bauer, N.; Westermann, B.; Rosahl, S.; Scheel, D.; Lee, J.; pH effects on plant calcium fluxes: lessons from acidification-mediated calcium elevation induced by the γ-glutamyl-leucine dipeptide identified from Phytophthora infestans Sci. Rep. 9, 4733, (2019) DOI: 10.1038/s41598-019-41276-0

Cytosolic Ca2+ ([Ca2+]cyt) elevation is an early signaling response upon exposure to pathogen-derived molecules (so-called microbe-associated molecular patterns, MAMPs) and has been successfully used as a quantitative read-out in genetic screens to identify MAMP receptors or their associated components. Here, we isolated and identified by mass spectrometry the dipeptide γ-Glu-Leu as a component of a Phytophthora infestans mycelium extract that induces [Ca2+]cyt elevation. Treatment of Arabidopsis seedlings with synthetic γ-Glu-Leu revealed stimulatory effects on defense signaling, including a weak enhancement of the expression of some MAMP-inducible genes or affecting the refractory period to a second MAMP elicitation. However, γ-Glu-Leu is not a classical MAMP since pH adjustment abolished these activities and importantly, the observed effects of γ-Glu-Leu could be recapitulated by mimicking extracellular acidification. Thus, although γ-Glu-Leu can act as a direct agonist of calcium sensing receptors in animal systems, the Ca2+-mobilizing activity in plants reported here is due to acidification. Low pH also shapes the Ca2+ signature of well-studied MAMPs (e.g. flg22) or excitatory amino acids such as glutamate. Overall, this work serves as a cautionary reminder that in defense signaling studies where Ca2+ flux measurements are concerned, it is important to monitor and consider the effects of pH.
Publikation

Brauch, S.; Henze, M.; Osswald, B.; Naumann, K.; Wessjohann, L. A.; van Berkel, S. S.; Westermann, B.; Fast and efficient MCR-based synthesis of clickable rhodamine tags for protein profiling Org. Biomol. Chem. 10, 958-965, (2012) DOI: 10.1039/C1OB06581E

Protein profiling probes are important tools for studying the composition of the proteome and as such have contributed greatly to the understanding of various complex biological processes in higher organisms. For this purpose the application of fluorescently labeled activity or affinity probes is highly desirable. Especially for in vivodetection of low abundant target proteins, otherwise difficult to analyse by standard blotting techniques, fluorescently labeled profiling probes are of high value. Here, a one-pot protocol for the synthesis of activated fluorescent labels (i.e.azide, alkynyl or NHS), based on the Ugi-4-component reaction (Ugi-4CR), is presented. As a result of the peptoidic structure formed, the fluorescent properties of the products are pH insensitive. Moreover, the applicability of these probes, as exemplified by the labeling of model protein BSA, will be discussed.
Publikation

Henze, M.; Kreye, O.; Brauch, S.; Nitsche, C.; Naumann, K.; Wessjohann, L. A.; Westermann, B.; Photoaffinity-Labeled Peptoids and Depsipeptides by Multicomponent Reactions Synthesis 2010, 2997-3003, (2010) DOI: 10.1055/s-0030-1258182

Photoaffinity tags can be incorporated easily into peptoids and congeners by the Ugi and Passerini multicomponent reactions. Products related to photo-methionine and photo-leucine can be accomplished by diazirine-containing building blocks. The same protocols can be used to synthesize derivatives with benzophenone photo cross-linkers.
IPB Mainnav Search