jump to searchjump to navigationjump to content

Proteome Analytics

The spatio-temporal remodeling of the proteome, the cellular complement of all proteoforms, is a primary phenotype determinant. As such we are interested in quantifying protein expression dynamics, i.e. the changing abundance, subcellular localization, post translational modification and interaction of proteins in various biological scenarios. It is our goal to gain an understanding of the intricate mechanisms of plant proteome biology.

Fig.1 and 2. Cutting edge mass spectrometry is used to measure peptides and proteins.
Fig.1 and 2. Cutting edge mass spectrometry is used to measure peptides and proteins.

Recently our research group has streamlined and optimized the discovery proteomics approach and adapted it to plants. This technology now allows us to routinely quantify from 6,000 to 9,000 proteins (protein groups) per tissue sample with at least one unique peptide and a peptide and protein FDR threshold of 1%.

A primary research interest of the group is the effects of phytohormones in biotic and abiotic stress adaption. We are applying the deep proteomics strategy in combination with metabolomics and targeted proteomics measurements to shed more light on the interplay of the canonical defense phytohormones salicylic acid, jasmonate and ethylene but also on the role of auxin in the hormone signal signature in reshaping the proteome to resist pathogen attack.

Deep proteomics measurements of various tissues throughout plant development led to date to the accumulation of mass spectrometric evidence of nearly 16,000 protein coding genes which is about 60% of Arabidopsis thaliana open reading frames. This extensive coverage of the Arabidopsis genome is being used to investigate proteome wide correlation of protein abundance in different tissues as well as correlated local protein expression of genes in smaller and larger neighborhoods.

Fig. 3. Deep coverage of the Arabidopsis thaliana proteome
Fig. 3. Deep coverage of the Arabidopsis thaliana proteome

Targeted proteomics approaches are also well established in the group as a complement to discovery proteomics. These were particularly advanced by accurate measurement of fragment ion masses with the QExactive Plus mass spectrometer. This allows interpretation of MS/MS spectra and assignment of PTMs to peptide primary structure with low error probability. Reversible, multi-site PTM has as much an impact on protein function as translation of the nascent polypeptide itself. Numerous directed and undirected proteomics studies that quantify site-specific protein PTM are being performed with a growing interest in histone modification and epigenetics.

Equipment and Instrumentation

 

Mass Spectrometry

  • Orbitrap Velos Pro (Thermo Scientific)
  • QExactive Plus (Thermo Scientific)

 

HPLC

  • EASY-nLC II (Thermo Scientific)
  • EASY-nLC 1000 (Thermo Scientific)
  • Ultimate 3000 (Thermo Scientific)

 

Software

  • Mascot v.2.5
  • Mascot Distiller
  • SEQUEST
  • Proteome Discoverer v.1.4
  • Progenesis QIP
  • Scaffold 4 / Scaffold PTM 2 Image Quant TL
  • Skyline
  • MaxQuant
  • Perseus
  • MapMan

The Team

Dr. Wolfgang Hoehenwarter

Staff Member
Abukhalaf, Mohammad PhD Student
Herr, Tobias Research Assistant
Proksch, Carsten Technician
Thieme, Domenika Technician

Publications by Tag: Proteomics

Sort by: Year Type of publication

Displaying results 1 to 1 of 1.

Publications

Frolov, A.; Mamontova, T.; Ihling, C.; Lukasheva, E.; Bankin, M.; Chantseva, V.; Vikhnina, M.; Soboleva, A.; Shumilina, J.; Mavropolo-Stolyarenko, G.; Grishina, T.; Osmolovskaya, N.; Zhukov, V.; Hoehenwarter, W.; Sinz, A.; Tikhononovich, I.; Wessjohann, L.; Bilova, T.; Smolikova, G.; Medvedev, S. Mining seed proteome: from protein dynamics to modification profiles Biol Commun 63, 43-58, (2018) DOI: 10.21638/spbu03.2018.106

In the modern world, crop plants represent a major source of daily consumed foods. Among them, cereals and legumes — i.e. the crops accumulating oils, carbohydrates and proteins in their seeds — dominate in European agriculture, tremendously impacting global protein consumption and biodiesel production. Therefore, the seeds of crop plants attract the special attention of biologists, biochemists, nutritional physiologists and food chemists. Seed development and germination, as well as age- and stress-related changes in their viability and nutritional properties, can be addressed by a variety of physiological and biochemical methods. In this context, the methods of functional genomics can be applied to address characteristic changes in seed metabolism, which can give access to stress-resistant genotypes. Among these methods, proteomics is one of the most effective tools, allowing mining metabolism changes on the protein level. Here we discuss the main methodological approaches of seed proteomics in the context of physiological changes related to environmental stress and ageing. We provide a comprehensive comparison of gel- and chromatographybased approaches with a special emphasis on advantages and disadvantages of both strategies in characterization of the seed proteome.

This page was last modified on 14.11.2018.

IPB Mainnav Search