jump to searchjump to navigationjump to content

Metabolomics

Nowadays, gene discovery has been made very efficient with the combination of deep sequencing and the exploitation of natural variation. Just in Arabidopsis, hundreds of genetic loci have been identified as influencing a wide variety of processes, and we aim to go from gene-of-interest to characterized protein product using approaches to “take a picture” of the comprehensive metabolome of the plant.

The IPB is currently operating a wide range of NMR and mass spectrometry instruments for metabolomics across all four departments, which are integrated into our Metabolomics Platform.

The experimental work is complemented by extensive Cheminformatics and Bioinformatics research to process and interpret the huge amounts of data. The IPB is operating the first European MassBank server, and hosts several online tools for metabolite identification.

Contact partner for all interests concerning the metabolomics platform is Dr. Steffen Neumann.

Publications by Tag: Metabolomics

Displaying results 1 to 3 of 3.

Publications

Wolf, S., Schmidt, S., Müller-Hannemann, M. & Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra BMC Bioinformatics 2010 148, 11, (2010) DOI: 10.1186/1471-2105-11-148

Background

Mass spectrometry has become the analytical method of choice in metabolomics research. The identification of unknown compounds is the main bottleneck. In addition to the precursor mass, tandem MS spectra carry informative fragment peaks, but the coverage of spectral libraries of measured reference compounds are far from covering the complete chemical space. Compound libraries such as PubChem or KEGG describe a larger number of compounds, which can be used to compare their in silico fragmentation with spectra of unknown metabolites.

Results

We created the MetFrag suite to obtain a candidate list from compound libraries based on the precursor mass, subsequently ranked by the agreement between measured and in silico fragments. In the evaluation MetFrag was able to rank most of the correct compounds within the top 3 candidates returned by an exact mass query in KEGG. Compared to a previously published study, MetFrag obtained better results than the commercial MassFrontier software. Especially for large compound libraries, the candidates with a good score show a high structural similarity or just different stereochemistry, a subsequent clustering based on chemical distances reduces this redundancy. The in silico fragmentation requires less than a second to process a molecule, and MetFrag performs a search in KEGG or PubChem on average within 30 to 300 seconds, respectively, on an average desktop PC.

Conclusions

We presented a method that is able to identify small molecules from tandem MS measurements, even without spectral reference data or a large set of fragmentation rules. With today's massive general purpose compound libraries we obtain dozens of very similar candidates, which still allows a confident estimate of the correct compound class. Our tool MetFrag improves the identification of unknown substances from tandem MS spectra and delivers better results than comparable commercial software. MetFrag is available through a web application, web services and as java library. The web frontend allows the end-user to analyse single spectra and browse the results, whereas the web service and console application are aimed to perform batch searches and evaluation.

Publications

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohege, T., Matsuda, F., Sawada, Y., Hirai, M.Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoko, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K. & Nishioka, T. MassBank: a public repository for sharing mass spectral data for life sciences Journal of Mass Spectrometrie 45(7), 703-714, (2010) DOI: 10.1002/jms.1777

MassBank is the first public repository of mass spectra of small chemical compounds for life sciences (<3000 Da). The database contains 605 electron-ionization mass spectrometry (EI-MS), 137 fast atom bombardment MS and 9276 electrospray ionization (ESI)-MS(n) data of 2337 authentic compounds of metabolites, 11 545 EI-MS and 834 other-MS data of 10,286 volatile natural and synthetic compounds, and 3045 ESI-MS(2) data of 679 synthetic drugs contributed by 16 research groups (January 2010). ESI-MS(2) data were analyzed under nonstandardized, independent experimental conditions. MassBank is a distributed database. Each research group provides data from its own MassBank data servers distributed on the Internet. MassBank users can access either all of the MassBank data or a subset of the data by specifying one or more experimental conditions. In a spectral search to retrieve mass spectra similar to a query mass spectrum, the similarity score is calculated by a weighted cosine correlation in which weighting exponents on peak intensity and the mass-to-charge ratio are optimized to the ESI-MS(2) data. MassBank also provides a merged spectrum for each compound prepared by merging the analyzed ESI-MS(2) data on an identical compound under different collision-induced dissociation conditions. Data merging has significantly improved the precision of the identification of a chemical compound by 21-23% at a similarity score of 0.6. Thus, MassBank is useful for the identification of chemical compounds and the publication of experimental data.

Publications

Neumann, S. & Böcker, S. Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules Analytical and Bioanalytical Chemistry 398, 2779-2788, (2010) DOI: 10.1007/s00216-010-4142-5

The identification of compounds from mass spectrometry (MS) data is still seen as a major bottleneck in the interpretation of MS data. This is particularly the case for the identification of small compounds such as metabolites, where until recently little progress has been made. Here we review the available approaches to annotation and identification of chemical compounds based on electrospray ionization (ESI-MS) data. The methods are not limited to metabolomics applications, but are applicable to any small compounds amenable to MS analysis. Starting with the definition of identification, we focus on the analysis of tandem mass and MS(n) spectra, which can provide a wealth of structural information. Searching in libraries of reference spectra provides the most reliable source of identification, especially if measured on comparable instruments. We review several choices for the distance functions. The identification without reference spectra is even more challenging, because it requires approaches to interpret tandem mass spectra with regard to the molecular structure. Both commercial and free tools are capable of mining general-purpose compound libraries, and identifying candidate compounds. The holy grail of computational mass spectrometry is the de novo deduction of structure hypotheses for compounds, where method development has only started thus far. In a case study, we apply several of the available methods to the three compounds, kaempferol, reserpine, and verapamil, and investigate whether this results in reliable identifications.

This page was last modified on 10.03.2014.

IPB Mainnav Search