jump to searchjump to navigationjump to content

Imaging Unit

Nowadays, the elucidation of molecular and biochemical processes requires its combination with investigation of cells – their physiological properties, their structure, the organelles they contain, interactions with their environment, their life cycle, division and death. For centuries, progress in biological research has been connected to the development of tools and equipment that allow new insights into living matter. The invention of and improvements in optical systems were very important because exceeding the limits of the optical resolution of the human eye delivered new insights into tissues, cells and subcellular compartments on the one hand and cellular processes on the other.

The Imaging Unit of the IPB aims to support all research groups in their use of cell biological methods. Currently, at least 13 research groups of the institute are using this unit.

The unit provides:

  • Coordinated supervision and maintenance of equipment
  • Optimal training of coworkers
  • Maximal use of IPB investments
  • Updating of equipment according to state-of-the-art and to requirements of actual research

The working principle of this unit is:

  • Unit headed by one scientist (Prof. Dr. Bettina Hause) and supported by one technician (Hagen Stellmach)
  • Equipment is located decentralized, but its maintenance is carried out centralized
  • For all cell biological methods advice, training and help is provided, extensive experiments, however, have to be done by the co-workers themselves

Devices and materials:

 

Microscopes:

Several stereo microscopes
(Zeiss and Nikon)

Multipurpose MacroMicroSystem equipped with epi-fluorescence: AZ100 (Nikon) with camera (one in each Dept. MSV and SEB)

Lightsheet Microscope
 

Lightsheet Z1 (Zeiss)                                                                                                                                               

Epi-fluorescence microscopes

Axioplan 2 (Zeiss) with differential interference contrast (DIC) device and ApoTome to obtain optical sections, with two cameras (AxioCam MRm and AxioCam MRc5)

AxioImager (Zeiss) with differential interference contrast (DIC) device and ApoTome to obtain optical sections, with two cameras (AxioCam MRm and AxioCam MRc5)

Confocal Laser Scanning Microscope

LSM780 (Zeiss) with Airyscan

LSM700 (Zeiss)


Microtomes

Rotary microtomes to perform semi-thin sections (Microm und Leica)

Vibrating microtome (Vibratome VT1000S, Leica) (Dept. SZB)

Cryo-Microtom CM1950 (Leica)                                                                      

Miscellaneous

InsituPro VSi (Intavis) for automated in situ detection (Dept. SZB)

Micromanipulator (Eppendorf)

Laser Capture Microdissection                                                                    

More devices

  • Organelle-marker: Vectors and transgenic lines of Arabidopsis (Nelson et al., 2007)
  • Wave-marker: Vectors and transgenic lines of Arabidopsis (Geldner et al., 2009)









Methods established:

  • Fixiation, embedding and sectioning of plant materials
  • Laser-Micro-Dissection
  • Immuno labelling
  • in situ-hybridisation
  • light microscopy including fluorescence microscopy
  • confocal laser scanning microscopy
  • Determination of protein interactions via FRET and BiFC (Split-YFP)

Publications by Tag: Cell Biology

Displaying results 1 to 1 of 1.

Publications

Landgraf, R.; Schaarschmidt, S.; Hause, B. Repeated leaf wounding alters the colonization of <em>Medicago truncatula</em> roots by beneficial and pathogenic microorganisms. Plant Cell & Environment 35 (7), 1344-1357, (2012)

In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root-colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen-fixing bacterium Sinorhizobium meliloti. To obtain a long-lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate-induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall-bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA-induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.

This page was last modified on 14.11.2018.

IPB Mainnav Search