@Article{IPB-2096, author = {Kroj, T. and Rudd, J. J. and Nürnberger, T. and Gäbler, Y. and Lee, J. and Scheel, D.}, title = {{Mitogen-activated Protein Kinases Play an Essential Role in Oxidative Burst-independent Expression of Pathogenesis-related Genes in Parsley}}, year = {2003}, pages = {2256-2264}, journal = {J. Biol. Chem.}, doi = {10.1074/jbc.M208200200}, volume = {278}, abstract = {Plants are continuously exposed to attack by potential phytopathogens. Disease prevention requires pathogen recognition and the induction of a multifaceted defense response. We are studying the non-host disease resistance response of parsley to the oomycete, Phytophthora sojae using a cell culture-based system. Receptor-mediated recognition of P. sojae may be achieved through a thirteen amino acid peptide sequence (Pep-13) present within an abundant cell wall transglutaminase. Following recognition of this elicitor molecule, parsley cells mount a defense response, which includes the generation of reactive oxygen species (ROS) and transcriptional activation of genes encoding pathogenesis-related (PR) proteins or enzymes involved in the synthesis of antimicrobial phytoalexins. Treatment of parsley cells with the NADPH oxidase inhibitor, diphenylene iodonium (DPI), blocked both Pep-13-induced phytoalexin production and the accumulation of transcripts encoding enzymes involved in their synthesis. In contrast, DPI treatment had no effect upon Pep-13-induced PRgene expression, suggesting the existence of an oxidative burst-independent mechanism for the transcriptional activation ofPR genes. The use of specific antibodies enabled the identification of three parsley mitogen-activated protein kinases (MAPKs) that are activated within the signal transduction pathway(s) triggered following recognition of Pep-13. Other environmental challenges failed to activate these kinases in parsley cells, suggesting that their activation plays a key role in defense signal transduction. Moreover, by making use of a protoplast co-transfection system overexpressing wild-type and loss-of-function MAPK mutants, we show an essential role for post-translational phosphorylation and activation of MAPKs for oxidative burst-independentPR promoter activation.} }