jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 11 to 20 of 76.

Publications

Anh, N. T. H.; Sung, T. V.; Wessjohann, L. A.; Adam, G.; Some hydroxycinnamic acid esters of phenylethyl alcohol glycosides from Rehmannia glutinosa Libosch Vietnam J. Chem. 40, 175-179, (2002)

0
Publications

Abel, S.; Ticconi, C. A.; Delatorre, C. A.; Phosphate sensing in higher plants Physiol. Plant. 115, 1-8, (2002) DOI: 10.1034/j.1399-3054.2002.1150101.x

Phosphate (Pi) plays a central role as reactant and effector molecule in plant cell metabolism. However, Pi is the least accessible macronutrient in many ecosystems and its low availability often limits plant growth. Plants have evolved an array of molecular and morphological adaptations to cope with Pi limitation, which include dramatic changes in gene expression and root development to facilitate Pi acquisition and recycling. Although physiological responses to Pi starvation have been increasingly studied and understood, the initial molecular events that monitor and transmit information on external and internal Pi status remain to be elucidated in plants. This review summarizes molecular and developmental Pi starvation responses of higher plants and the evidence for coordinated regulation of gene expression, followed by a discussion of the potential involvement of plant hormones in Pi sensing and of molecular genetic approaches to elucidate plant signalling of low Pi availability. Complementary genetic strategies in Arabidopsis thaliana have been developed that are expected to identify components of plant signal transduction pathways involved in Pi sensing. Innovative screening methods utilize reporter gene constructs, conditional growth on organophosphates and the inhibitory properties of the Pi analogue phosphite, which hold the promise for significant advances in our understanding of the complex mechanisms by which plants regulate Pi‐starvation responses.
Publications

Abdala, G.; Castro, G.; Miersch, O.; Pearce, D.; Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum) Plant Growth Regul. 36, 121-126, (2002) DOI: 10.1023/A:1015065011536

Among the multiple environmental signals and hormonal factors regulatingpotato plant morphogenesis and controlling tuber induction, jasmonates (JAs)andgibberellins (GAs) are important components of the signalling pathways in theseprocesses. In the present study, with Solanum tuberosum L.cv. Spunta, we followed the endogenous changes of JAs and GAs during thedevelopmental stages of soil-grown potato plants. Foliage at initial growthshowed the highest jasmonic acid (JA) concentration, while in roots the highestcontent was observed in the stage of tuber set. In stolons at the developmentalstage of tuber set an important increase of JA was found; however, in tubersthere was no change in this compound during tuber set and subsequent growth.Methyl jasmonate (Me-JA) in foliage did not show the same pattern as JA; Me-JAdecreased during the developmental stages in which it was monitored, meanwhileJA increased during those stages. The highest total amount of JAs expressed asJA + Me-JA was found at tuber set. A very important peak ofJA in roots was coincident with that observed in stolons at tuber set. Also, aprogressive increase of this compound in roots was shown during the transitionof stolons to tubers. Of the two GAs monitored, gibberellic acid(GA3) was the most abundant in all the organs. While GA1and GA3 were also found in stolons at the time of tuber set, noothermeasurements of GAs were obtained for stolons at previous stages of plantdevelopment. Our results indicate that high levels of JA and GAs are found indifferent tissues, especially during stolon growth and tuber set.
Publications

Kolbe, A.; Kramell, R.; Porzel, A.; Schmidt, J.; Schneider, G.; Adam, G.; Syntheses of Dexamethasone Conjugates of the Phytohormones Gibberellin A3 and 24-Epicastasterone Collect. Czech. Chem. Commun. 67, 103-114, (2002) DOI: 10.1135/cccc20020103

The syntheses of N-[10-(9α-fluoro-11β,17α-dihydroxy-16α-methyl-3-oxoandrosta-1,4-diene-17β-carboxamido)decyl]gibberellamide (7) and 6-[({N-[10-(9α-fluoro-11β,17α-dihydroxy- 16α-methyl-3-oxoandrosta-1,4-diene-17β-carboxamido)decyl]carbamoyl}methoxy)imino]-24-epicastasterone (10) are described. [(Benzotriazol-1-yl)oxy]bis(pyrrolidin-1-yl)methylium hexafluorophosphate (HBPyU) was used as the coupling agent for the reaction of gibberellic acid as well as of 24-epicastasterone-O-(carboxymethyl)oxime with N-(10-aminodecyl)- 9α-fluoro-11β,17α-dihydroxy-16α-methyl-3-oxoandrosta-1,4-diene-17β-carboxamide (4). The gibberellic acid conjugate 7 was also synthesised by the coupling of succinimidyl gibberellate 6 with amine 4.
Publications

Ichimura, K.; Shinozaki, K.; Tena, G.; Sheen, J.; Henry, Y.; Champion, A.; Kreis, M.; Zhang, S.; Hirt, H.; Wilson, C.; Heberle-Bors, E.; Ellis, B. E.; Morris, P. C.; Innes, R. W.; Ecker, J. R.; Scheel, D.; Klessig, D. F.; Machida, Y.; Mundy, J.; Ohashi, Y.; Walker, J. C.; Mitogen-activated protein kinase cascades in plants: a new nomenclature Trends Plant Sci. 7, 301-308, (2002) DOI: 10.1016/S1360-1385(02)02302-6

Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes, including yeasts, animals and plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. In plants, MAPK cascades are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. Completion of the Arabidopsis genome-sequencing project has revealed the existence of 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase kinases. Here, we propose a simplified nomenclature for Arabidopsis MAPKs and MAPK kinases that might also serve as a basis for standard annotation of these gene families in all plants.
Publications

Ibdah, M.; Krins, A.; Seidlitz, H. K.; Heller, W.; Strack, D.; Vogt, T.; Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation Plant Cell Environ. 25, 1145-1154, (2002) DOI: 10.1046/j.1365-3040.2002.00895.x

Mesembryanthemum crystallinum L. (Aizoaceae) is a drought‐ and salt‐tolerant halophyte that is able to endure harsh environmental conditions. Upon irradiation with high light irradiance (1200–1500 µ mol m−2 s−1) it displays a rapid cell‐specific accumulation of plant secondary metabolites in the upper leaf epidermis; a phenomenon that is not detectable with salt or drought treatment. The accumulation of these compounds, the betacyanins and acylated flavonol glycosides, increases if the plants are exposed to polychromatic radiation with a progressively decreasing short‐wave cut‐off in the ultraviolet range. The response is localized in the epidermal bladder cells on the tips of young leaves and epidermal layers of fully expanded leaves. It is demonstrated that the accumulation of flavonols and betacyanins can be described by a weakly sigmoid dose function in combination with an exponential decrease of the response function of the plant with increasing wavelength.
Publications

Huckelhoven, R.; Trujillo, M.; Dechert, C.; Schultheiss, H.; Kogel, K.-H.; Functional studies on the role of reactive oxygen intermediates in the resistance of barley against powdery mildew Plant Protect. Sci. 38, 458-460, (2002) DOI: 10.17221/10523-PPS

The role of reactive oxygen intermediate (ROI) accumulation in resistance and susceptibility of plants to parasitic fungi is still little understood. We examined the spatial and temporal occurrence of different ROIs in barley after inoculation with the biotrophic fungus Blumeria graminis f.sp. hordei (Bgh, barley powdery mildew fungus). Using histochemical analyses, we collected correlative data indicating that H2O2 and O2•– play different roles in background penetration resistance to Bgh. To study the role of O2•– in detail, we isolated barley cDNAs encoding a NADPH oxidase GP91PHOX homologue and a RACB homologue, which may be involved in NADPH oxidase activation. Interestingly, transient silencing of RACB or GP91PHOX via sequence-specific RNA interference enhanced penetration resistance of barley to Bgh. Together, data reveal rather a negative than a positive role of superoxide generation in background resistance of barley to Bgh.
Publications

Holzgrabe, U.; Cambareri, A.; Kuhl, U.; Siener, T.; Brandt, W.; Straßburger, W.; Friderichs, E.; Englberger, W.; Kögel, B.; Haurand, M.; Diazabicyclononanones, a potent class of kappa opioid analgesics Farmaco 57, 531-534, (2002) DOI: 10.1016/S0014-827X(02)01243-0

The 1,5-dimethyl 3,7-diaza-3,7-dimethyl-9-oxo-2,4-di-2-pyridine-bicyclo[3.3.1]nonane-1,5-dicarboxylate, HZ2, has a high and selective affinity for the kappa opioid receptor and an antinociceptive activity comparable to morphine. In addition, it is characterized by a long duration of action and a high oral bioavailability. QSAR studies within series of kappa agonists revealed a chair-boat conformation of a double protonated HZ2 characterized by an almost parallel orientation of the C9 carbonyl group and the N7-H group and at least one aromatic ring to be the pharmacophoric arrangement. Structural variations showed that the pyridine rings in 2 and 4 position can be replaced with p-methoxy-, m-hydroxy- and m-fluoro-substituted phenyl rings. However, all other substituents have to be kept the same for a high affinity to the kappa receptor.
Publications

Holzgrabe, U.; Friderichs, E.; Englberger, W.; Strassberger, W.; Maurand, M.; Brandt, W.; Camberri, A.; Kuhl, U.; Siener, T.; Diazabicyclononanones, a new class of opioid-type analgesics Sci. Cult. 68, 1-4, (2002)

0
Publications

Hause, B.; Maier, W.; Miersch, O.; Kramell, R.; Strack, D.; Induction of Jasmonate Biosynthesis in Arbuscular Mycorrhizal Barley Roots Plant Physiol. 130, 1213-1220, (2002) DOI: 10.1104/pp.006007

Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells. The concomitant gene expression indicates that jasmonates are generated and act within arbuscule-containing cells. By use of a near-synchronous mycorrhization, analysis of temporal expression patterns showed the occurrence of transcript accumulation 4 to 6 d after the appearance of the first arbuscules. This suggests that the endogenous rise in jasmonates might be related to the fully established symbiosis rather than to the recognition of interacting partners or to the onset of interaction. Because the plant supplies the fungus with carbohydrates, a model is proposed in which the induction of JA biosynthesis in colonized roots is linked to the stronger sink function of mycorrhizal roots compared with nonmycorrhizal roots.
IPB Mainnav Search