jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 10 of 168.

Publications

Schön, M.; Töller, A.; Diezel, C.; Roth, C.; Westphal, L.; Wiermer, M.; Somssich, I. E.; Analyses of wrky18 wrky40 Plants Reveal Critical Roles of SA/EDS1 Signaling and Indole-Glucosinolate Biosynthesis for Golovinomyces orontii Resistance and a Loss-of Resistance Towards Pseudomonas syringae pv. tomato AvrRPS4 Mol. Plant Microbe Interact. 26, 758-767, (2013) DOI: 10.1094/MPMI-11-12-0265-R

Simultaneous mutation of two WRKY-type transcription factors, WRKY18 and WRKY40, renders otherwise susceptible wild-type Arabidopsis plants resistant towards the biotrophic powdery mildew fungus Golovinomyces orontii. Resistance in wrky18 wrky40 double mutant plants is accompanied by massive transcriptional reprogramming, imbalance in salicylic acid (SA) and jasmonic acid (JA) signaling, altered ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) expression, and accumulation of the phytoalexin camalexin. Genetic analyses identified SA biosynthesis and EDS1 signaling as well as biosynthesis of the indole-glucosinolate 4MI3G as essential components required for loss-of-WRKY18 WRKY40–mediated resistance towards G. orontii. The analysis of wrky18 wrky40 pad3 mutant plants impaired in camalexin biosynthesis revealed an uncoupling of pre- from postinvasive resistance against G. orontii. Comprehensive infection studies demonstrated the specificity of wrky18 wrky40–mediated G. orontii resistance. Interestingly, WRKY18 and WRKY40 act as positive regulators in effector-triggered immunity, as the wrky18 wrky40 double mutant was found to be strongly susceptible towards the bacterial pathogen Pseudomonas syringae DC3000 expressing the effector AvrRPS4 but not against other tested Pseudomonas strains. We hypothesize that G. orontii depends on the function of WRKY18 and WRKY40 to successfully infect Arabidopsis wild-type plants while, in the interaction with P. syringae AvrRPS4, they are required to mediate effector-triggered immunity.
Publications

Schmidts, V.; Fredersdorf, M.; Lübken, T.; Porzel, A.; Arnold, N.; Wessjohann, L.; Thiele, C. M.; RDC-Based Determination of the Relative Configuration of the Fungicidal Cyclopentenone 4,6-Diacetylhygrophorone A12 J. Nat. Prod. 76, 839-844, (2013) DOI: 10.1021/np300728b

The hygrophorones, a class of cyclopentenones isolated from fruiting bodies of the genus Hygrophorus (basidiomycetes), show promising antifungal activity. While the constitution of 4,6-diacetylhygrophorone A(12) (3) and the relative configuration of the stereogenic centers in the cyclopentenone ring were elucidated using standard NMR and MS techniques, the relative configuration of the exocyclic stereogenic center could not be assigned. By introducing a sample of 3 into an alignment medium and measuring anisotropic NMR parameters, namely, residual dipolar couplings, we were able to unambiguously determine the relative configuration of all three stereogenic centers in 4,6-diacetylhygrophorone A(12) simultaneously by fitting several structure proposals to the experimental data.
Publications

Schaarschmidt, S.; Gresshoff, P. M.; Hause, B.; Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization Genome Biol. 14, R62, (2013) DOI: 10.1186/gb-2013-14-6-r62

BackgroundSimilarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis.ResultsAffymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis.ConclusionsOur results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Publications

Ruttkies, C.; Gerlich, M.; Neumann, S.; Tackling CASMI 2012: Solutions from MetFrag and MetFusion Metabolites 3, 623-636, (2013) DOI: 10.3390/metabo3030623

The task in the critical assessment of small molecule identification (CASMI) contest category 2 was to determine the identification of (initially) unknown compounds for which high-resolution tandem mass spectra were published. We focused on computer-assisted methods that tried to correctly identify the compound automatically and entered the contest with MetFrag and MetFusion to score candidate structures retrieved from the PubChem structure database. MetFrag was combined with the metabolite-likeness score, which helped to improve the performance for the natural product challenges. We present the results, discuss the performance, and give details of how to interpret the MetFrag and MetFusion output.
Publications

Robatzek, S.; Wirthmueller, L.; Mapping FLS2 function to structure: LRRs, kinase and its working bits Protoplasma 250, 671-681, (2013) DOI: 10.1007/s00709-012-0459-6

The plasma membrane-localised FLAGELLIN SENSING 2 (FLS2) receptor is an important component of plant immunity against potentially pathogenic bacteria, acting to recognise the conserved flg22 peptide of flagellin. FLS2 shares the common structure of transmembrane receptor kinases with a receptor-like ectodomain composed of leucine-rich repeats (LRR) and an active intracellular kinase domain. Upon ligand binding, FLS2 dimerises with the regulatory LRR-receptor kinase BRI1-associated kinase 1, which in turn triggers downstream signalling cascades. Although lacking crystal structure data, recent advances have been made in our understanding of flg22 recognition based on structural and functional analyses of FLS2. These studies have revealed critical regions/residues of FLS2 and post-translational modifications that regulate the abundance and activity of this receptor. In this review, we present the current knowledge on the structural mechanism of the FLS2–flg22 interaction and subsequent receptor-mediated signalling.
Publications

Rivera, D. G.; León, F.; Concepción, O.; Morales, F. E.; Wessjohann, L. A.; A Multiple Multicomponent Approach to Chimeric Peptide-Peptoid Podands Chem.-Eur. J. 19, 6417-6428, (2013) DOI: 10.1002/chem.201201591

The success of multi‐armed, peptide‐based receptors in supramolecular chemistry traditionally is not only based on the sequence but equally on an appropriate positioning of various peptidic chains to create a multivalent array of binding elements. As a faster, more versatile and alternative access toward (pseudo)peptidic receptors, a new approach based on multiple Ugi four‐component reactions (Ugi‐4CR) is proposed as a means of simultaneously incorporating several binding and catalytic elements into organizing scaffolds. By employing α‐amino acids either as the amino or acid components of the Ugi‐4CRs, this multiple multicomponent process allows for the one‐pot assembly of podands bearing chimeric peptide–peptoid chains as appended arms. Tripodal, bowl‐shaped, and concave polyfunctional skeletons are employed as topologically varied platforms for positioning the multiple peptidic chains formed by Ugi‐4CRs. In a similar approach, steroidal building blocks with several axially‐oriented isocyano groups are synthesized and utilized to align the chimeric chains with conformational constrains, thus providing an alternative to the classical peptido‐steroidal receptors. The branched and hybrid peptide–peptoid appendages allow new possibilities for both rational design and combinatorial production of synthetic receptors. The concept is also expandable to other multicomponent reactions.
Publications

Rausch, F.; Brandt, W.; Schicht, M.; Bräuer, L.; Paulsen, F.; Protein modeling and molecular dynamic studies of two new surfactant proteins J. Cheminform. 5, O2, (2013) DOI: 10.1186/1758-2946-5-S1-O2

0
Publications

Poeschl, Y.; Delker, C.; Trenner, J.; Ullrich, K. K.; Quint, M.; Grosse, I.; Optimized Probe Masking for Comparative Transcriptomics of Closely Related Species PLOS ONE 8, e78497, (2013) DOI: 10.1371/journal.pone.0078497

Microarrays are commonly applied to study the transcriptome of specific species. However, many available microarrays are restricted to model organisms, and the design of custom microarrays for other species is often not feasible. Hence, transcriptomics approaches of non-model organisms as well as comparative transcriptomics studies among two or more species often make use of cost-intensive RNAseq studies or, alternatively, by hybridizing transcripts of a query species to a microarray of a closely related species. When analyzing these cross-species microarray expression data, differences in the transcriptome of the query species can cause problems, such as the following: (i) lower hybridization accuracy of probes due to mismatches or deletions, (ii) probes binding multiple transcripts of different genes, and (iii) probes binding transcripts of non-orthologous genes. So far, methods for (i) exist, but these neglect (ii) and (iii). Here, we propose an approach for comparative transcriptomics addressing problems (i) to (iii), which retains only transcript-specific probes binding transcripts of orthologous genes. We apply this approach to an Arabidopsis lyrata expression data set measured on a microarray designed for Arabidopsis thaliana, and compare it to two alternative approaches, a sequence-based approach and a genomic DNA hybridization-based approach. We investigate the number of retained probe sets, and we validate the resulting expression responses by qRT-PCR. We find that the proposed approach combines the benefit of sequence-based stringency and accuracy while allowing the expression analysis of much more genes than the alternative sequence-based approach. As an added benefit, the proposed approach requires probes to detect transcripts of orthologous genes only, which provides a superior base for biological interpretation of the measured expression responses.
Publications

Nualkaew, N.; Guennewich, N.; Springob, K.; Klamrak, A.; De-Eknamkul, W.; Kutchan, T. M.; Molecular cloning and catalytic activity of a membrane-bound prenyl diphosphate phosphatase from Croton stellatopilosus Ohba Phytochemistry 91, 140-147, (2013) DOI: 10.1016/j.phytochem.2012.09.010

Geranylgeraniol (GGOH), a bioactive acyclic diterpene with apoptotic induction activity, is the immediate precursor of the commercial anti-peptic, plaunotol (18-hydroxy geranylgeraniol), which is found in Croton stellatopilosus (Ohba). From this plant, a cDNA encoding a prenyl diphosphate phosphatase (CsPDP), which catalyses the dephosphorylation of geranylgeranyl diphosphate (GGPP) to GGOH, was isolated using a PCR approach. The full-length cDNA contained 888 bp and encoded a 33.6 kDa protein (295 amino acids) that was phylogenetically grouped into the phosphatidic acid phosphatase (PAP) enzyme family. The deduced amino acid sequence showed 6 hydrophobic transmembrane regions with 57–85% homology to the sequences of other plant PAPs. The recombinant CsPDP and its 4 truncated constructs exhibited decreasing dephosphorylation activities relative to the lengths of the N-terminal deletions. While the full-length CsPDP successfully performed the two sequential monodephosphorylation steps on GGPP to form GGOH, the larger N-terminal deletion in the truncated enzymes appeared to specifically decrease the catalytic efficiency of the second monodephosphorylation step. The information presented here on the CsPDP cDNA and factors affecting the dephosphorylation activity of its recombinant protein may eventually lead to the discovery of the specific GGPP phosphatase gene and enzyme that are involved in the formation of GGOH in the biosynthetic pathway of plaunotol in C. stellatopilosus.
Publications

Nickerson, M. L.; Bosley, A. D.; Weiss, J. S.; Kostiha, B. N.; Hirota, Y.; Brandt, W.; Esposito, D.; Kinoshita, S.; Wessjohann, L.; Morham, S. G.; Andresson, T.; Kruth, H. S.; Okano, T.; Dean, M.; The UBIAD1 Prenyltransferase Links Menaquinone-4 Synthesis to Cholesterol Metabolic Enzymes Hum. Mutat. 34, 317-329, (2013) DOI: 10.1002/humu.22230

Schnyder corneal dystrophy (SCD) is an autosomal dominant disease characterized by germline variants in UBIAD1 introducing missense alterations leading to deposition of cholesterol in the cornea, progressive opacification, and loss of visual acuity. UBIAD1 was recently shown to synthesize menaquinone‐4 (MK‐4, vitamin K2), but causal mechanisms of SCD are unknown. We report a novel c.864G>A UBIAD1 mutation altering glycine 177 to glutamic acid (p.G177E) in six SCD families, including four families from Finland who share a likely founder mutation. We observed reduced MK‐4 synthesis by UBIAD1 altered by SCD mutations p.N102S, p.G177R/E, and p.D112N, and molecular models showed p.G177‐mutant UBIAD1 disrupted transmembrane helices and active site residues. We show UBIAD1 interacts with HMGCR and SOAT1, enzymes catalyzing cholesterol synthesis and storage, respectively, using yeast two‐hybrid screening and immunoprecipitation. Docking simulations indicate cholesterol binds to UBIAD1 in the substrate‐binding cleft and substrate‐binding overlaps with GGPP binding, an MK‐4 substrate, suggesting potential competition between these metabolites. Impaired MK‐4 synthesis is a biochemical defect identified in SCD suggesting UBIAD1 links vitamin K and cholesterol metabolism through physical contact between enzymes and metabolites. Our data suggest a role for endogenous MK‐4 in maintaining cornea health and visual acuity.
IPB Mainnav Search