jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 10 of 78.

Publications

Xu, H.; Wang, Z.-X.; Schmidt, J.; Heide, L.; Li, S.-M.; Genetic analysis of the biosynthesis of the pyrrole and carbamoyl moieties of coumermycin A1 and novobiocin Mol. Gen. Genomics 268, 387-396, (2002) DOI: 10.1007/s00438-002-0759-1

The aminocoumarin antibiotic coumermycin A1 contains a central and two terminal pyrrole moieties. The coumermycin gene cluster in Streptomyces rishiriensis contains three genes (couN3, couN4 and couN5) that show sequence similarity to genes involved in the biosynthesis of the pyrrole moieties of pyoluteorin in Pseudomonas fluorescens and of undecylprodiginine in S. coelicolor. The gene couN3, which codes for a putative L-prolyl-S-PCP dehydrogenase, and the gene couN4, which encodes a putative L-prolyl-AMP ligase, were disrupted using in-frame deletion and insertional inactivation, respectively. HPLC analysis of culture extracts showed that formation of the two terminal pyrrole moieties was abolished in the couN3 - und couN4 - mutants. The mutants accumulated coumermycin D, which contains only the central pyrrole moiety. This result not only confirmed the involvement of couN3 and couN4 in the biosynthesis of the terminal pyrrole-2-carboxylic acid moieties of coumermycin A1, but also indicated, for the first time, that the central 3-methylpyrrole-2,4-dicarboxylic acid unit of the coumermycins is formed by a biosynthetic pathway that differs from that used to assemble the terminal pyrrole moieties. novN, a putative carbamoyl transferase gene from the gene cluster for novobiocin biosynthesis in S. spheroides was expressed in the couN3 - mutant. This led to the formation of bis-carbamoylated coumermycin D, a novel compound of the coumermycin series.
Publications

Weichert, H.; Kolbe, A.; Kraus, A.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins in germinating cucumber seedlings - lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes Planta 215, 612-619, (2002) DOI: 10.1007/s00425-002-0779-4

A particular isoform of lipoxygenase (LOX) localized on lipid bodies was shown by earlier investigations to play a role in initiating the mobilization of triacylglycerols during seed germination. Here, further physiological functions of LOXs within whole cotyledons of cucumber (Cucumis sativus L.) were analyzed by measuring the endogenous amounts of LOX-derived products. The lipid-body LOX-derived esterified (13S)-hydroperoxy linoleic acid was the dominant metabolite of the LOX pathway in this tissue. It accumulated to about 14 µmol/g fresh weight, which represented about 6% of the total amount of linoleic acid in cotyledons. This LOX product was not only reduced to its hydroxy derivative, leading to degradation by β-oxidation, but alternatively it was metabolized by fatty acid hydroperoxide lyase leading to formation of hexanal as well. Furthermore, the activities of LOX forms metabolizing linolenic acid were detected by measuring the accumulation of volatile aldehydes and the allene oxide synthase-derived metabolite jasmonic acid. The first evidence is presented for an involvement of a lipid-body LOX form in the production of volatile aldehydes.
Publications

Wang, Q.; Grubb, C. D.; Abel, S.; Direct analysis of single leaf disks for chemopreventive glucosinolates Phytochem. Anal. 13, 152-157, (2002) DOI: 10.1002/pca.636

Natural isothiocyanates, produced during plant tissue damage from methionine‐derived glucosinolates, are potent inducers of mammalian phase 2 detoxification enzymes such as quinone reductase (QR). A greatly simplified bioassay for glucosinolates based on induction and colorimetric detection of QR activity in murine hepatoma cells is described. It is demonstrated that excised leaf disks of Arabidopsis thaliana (ecotype Columbia) can directly and reproducibly substitute for cell‐free leaf extracts as inducers of murine QR, which reduces sample preparation to a minimum and maximizes throughput. A comparison of 1 and 3 mm diameter leaf disks indicated that QR inducer potency was proportional to disk circumference (extent of tissue damage) rather than to area. When compared to the QR inducer potency of the corresponding amount of extract, 1 mm leaf disks were equally effective, whereas 3 mm disks were 70% as potent. The QR inducer potency of leaf disks correlated positively with the content of methionine‐derived glucosinolates, as shown by the analysis of wild‐type plants and mutant lines with lower or higher glucosinolate content. Thus, the microtitre plate‐based assay of single leaf disks provides a robust and inexpensive visual method for rapidly screening large numbers of plants in mapping populations or mutant collections and may be applicable to other glucosinolate‐producing species.
Publications

Walter, M. H.; Hans, J.; Strack, D.; Two distantly related genes encoding 1-deoxy-D-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots Plant J. 31, 243-254, (2002) DOI: 10.1046/j.1365-313X.2002.01352.x

Isopentenyl diphosphate, the universal precursor of isoprenoids, is synthesized by two separate routes, one in the cytosol and the other in plastids. The initial step of the plastidial pathway is catalysed by 1‐deoxy‐d ‐xylulose 5‐phosphate synthase (DXS), which was previously thought to be encoded by a single‐copy gene. We have identified two distinct classes of DXS‐like cDNAs from the model legume Medicago truncatula . The deduced mature MtDXS1 and MtDXS2 proteins, excluding the predicted plastid‐targeting peptides, are similar in size (72.7 and 71.2 kDa) yet share only 70% identity in their amino acid sequences, and both encode functional DXS proteins as shown by heterologous expression in Escherichia coli. Available DXS sequences from other plants can easily be assigned to either class 1 or class 2. Partial sequences of multiple DXS genes in a single genome may be found in the databases of several monocot and dicot plants. Blot analyses of RNA from M. truncatula , maize, tomato and tobacco demonstrate preferential expression of DXS1 genes in many developing plant tissues except roots. By contrast, DXS2 transcript levels are low in most tissues but are strongly stimulated in roots upon colonization by mycorrhizal fungi, correlated with accumulation of carotenoids and apocarotenoids. Monoterpene‐synthesizing gland cells of leaf trichomes appear to be another site of DXS2 gene activity. The potential importance of DXS1 in many housekeeping functions and a still hypothetical role of DXS2 in the biosynthesis of secondary isoprenoids is discussed.
Publications

Voigt, B.; Porzel, A.; Adam, G.; Golsch, D.; Adam, W.; Wagner, C.; Merzweiler, K.; Synthesis of 2,24-Diepicastasterone and 3,24-Diepicastasterone as Potential Brassinosteroid Metabolites of the Cockroach Periplaneta americana Collect. Czech. Chem. Commun. 67, 91-102, (2002) DOI: 10.1135/cccc20020091

Investigations of the metabolic conversion of the phytohormone 24-epicastasterone (1) in the cockroach Periplaneta americana (L.) required the synthesis of 2,24-diepicastasterone (4), 3,24-diepicastasterone (7b) and 2-dehydro-3,24-diepicastasterone (9) as reference standards. 2,24-Diepicastasterone (4) was synthesized from 2α,3α-epoxy derivative 2 as well as from the 2β,3β-epoxy-22,23-diol 3 by acid-catalyzed water addition to the epoxy function leading to the desired 2β,3α-trans functionality. 3,24-Diepicastasterone (7b) was prepared by NaBH4-reduction of the 3-oxo derivative 6. Upon deprotection conditions from the ketol acetonides 6 and 8 in both cases 2-dehydro-3,24-diepicastasterone (9) was obtained. The structure of 2,24-diepicastasterone (4) was confirmed by X-ray analysis.
Publications

Vogt, T.; Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis Planta 214, 492-495, (2002) DOI: 10.1007/s00425-001-0685-1

Betanidin 6-O-glucosyltransferase (6-GT) is involved in the glycosylation of betacyanins, which replace the chromogenic anthocyanins as flower colorants in the Caryophyllales. The 6-GT cDNA was cloned from a cDNA library of Dorotheanthus bellidiformis (Burm. f.) N.E. Br., and the amino acid and nucleotide sequences were shown to be distinctly different from the corresponding betanidin 5-O-glucosyltransferase (5-GT) from the same plant species. Although both enzymes share very similar substrates, the proteins show only 19% amino acid sequence identity. In contrast, the protein sequence of the 6-GT showed significant identity to GTs from other species and may identify a new cluster of putative anthocyanidin GTs. Therefore, 6-GT and 5-GT apparently have evolved independently from ancestral glucosyltransferases involved in flavonoid biosynthesis.
Publications

Vigliocco, A.; Bonamico, B.; Alemano, S.; Miersch, O.; Abdala, G.; Stimulation of jasmonic acid production in Zea Mays L. infected by the maize rough dwarf virus - Río Cuarto. Reversion of symptoms by salicylic acid Biocell 26, 369-374, (2002)

In the present paper we study the possible biological relevance of endogenous jasmonic acid (JA) and exogenous salicylic acid (SA) in a plant-microbial system maize-virus. The virus disease "Mal de Río Cuarto" is caused by the maize rough dwarf virus - Río Cuarto. The characteristic symptoms are the appearance of galls or "enations" in leaves, shortening of the stem internodes, poor radical system and general stunting. Changes in JA and protein pattern in maize control and infected plants of a virus-tolerant cultivar were investigated. Healthy and infected-leaf discs were collected for JA measurement at different post-infection times (20, 40, 60 and 68 days). JA was also measured in roots on day 60 after infection. For SDS-PAGE protein analysis, leaf discs were also harvested on day 60 after infection. Infected leaves showed higher levels of JA than healthy leaves, and the rise in endogenous JA coincided with the enation formation. The soluble protein amount did not show differences between infected and healthy leaves; moreover, no difference in the expression of soluble protein was revealed by SDS-PAGE. Our results show that the octadecanoid pathway was stimulated in leaves and roots of the tolerant maize cultivar when infected by this virus. This finding, together with fewer plants with the disease symptoms, suggest that higher foliar and roots JA content may be related to disease tolerance. SA exogenous treatment caused the reversion of the dwarfism symptom.
Publications

Varet, A.; Parker, J.; Tornero, P.; Nass, N.; Nürnberger, T.; Dangl, J. L.; Scheel, D.; Lee, J.; NHL25 and NHL3, Two NDR1/HIN1-Like Genes in Arabidopsis thaliana with Potential Role(s) in Plant Defense Mol. Plant Microbe Interact. 15, 608-616, (2002) DOI: 10.1094/MPMI.2002.15.6.608

The Arabidopsis genome contains 28 genes with sequence homology to the Arabidopsis NDR1 gene and the tobacco HIN1 gene. Expression analysis of eight of these genes identified two (NHL25 and NHL3 for NDR1/HIN1-like) that show pathogen-dependent mRNA accumulation. Transcripts did not accumulate during infection with virulent Pseudomonas syringae pv. tomato DC3000 but did accumulate specifically when the bacteria carried any of the four avirulence genes avrRpm1, avrRpt2, avrB, or avrRps4. Furthermore, expression of avrRpt2 in plants containing the corresponding resistance gene, RPS2, was sufficient to induce transcript accumulation. However, during infection with an avirulent oomycete, Peronospora parasitica isolate Cala-2, only NHL25 expression was reproducibly induced. Salicylic acid (SA) treatment can induce expression of NHL25 and NHL3. Studies performed on nahG plants showed that, during interaction with avirulent bacteria, only the expression of NHL25 but not that of NHL3 was affected. This suggests involvement of separate SA-dependent and SA-independent pathways, respectively, in the transcriptional activation of these genes. Bacteria-induced gene expression was not abolished in ethylene- (etr1-3 and ein2-1) and jasmonate- (coi1-1) insensitive mutants or in mutants impaired in disease resistance (ndr1-1 and pad4-1). Interestingly, NHL3 transcripts accumulated after infiltration with the avirulent hrcC mutant of Pseudomonas syringae pv. tomato DC3000 and nonhost bacteria but not with the virulent Pseudomonas syringae pv. tomato DC3000, suggesting that virulent bacteria may suppress NHL3 expression during pathogenesis. Hence, the expression patterns and sequence homology to NDR1 and HIN1 suggest one or more potential roles for these genes in plant resistance.
Publications

van't Slot, K. A. E.; Knogge, W.; A Dual Role for Microbial Pathogen-Derived Effector Proteins in Plant Disease and Resistance Crit. Rev. Plant Sci. 21, 229-271, (2002) DOI: 10.1080/0735-260291044223

Many proteins from plant pathogens affecting the interaction with the host plant have dual functions: they promote virulence on the host species and they function as avirulence determinants by eliciting defense reactions in host cultivars expressing the appropriate resistance genes. In viruses all proteins encoded by the small genomes can be expected to be essential for viral development in the host. However, in different plants surveillance systems have evolved that are able to recognize most of these proteins. Bacteria and fungi have specialized pathogenicity and virulence genes. Many of the latter were originally identified through the resistance gene-dependent elicitor activity of their products. Their role in virulence only became apparent when they were inactivated or transferred to different microbes or after their ectopic expression in host plants. Many microbes appear to maintain these genes despite their disadvantageous effect, introducing only few mutations to abolish the interaction of their products with the plant recognition system. This has been interpreted as been indicative of a virulence function of the gene products that is not impaired by the mutations. Alternatively, in particular in bacteria there is now evidence that pathogenicity was acquired through horizontal gene transfer. Genes supporting virulence in the donor organism's original host appear to have traveled along. Being gratuitous in the new situation, they may have been inactivated without loss of any beneficial function for the pathogen.
Publications

Van Damme, E. J. M.; Hause, B.; Hu, J.; Barre, A.; Rougé, P.; Proost, P.; Peumans, W. J.; Two Distinct Jacalin-Related Lectins with a Different Specificity and Subcellular Location Are Major Vegetative Storage Proteins in the Bark of the Black Mulberry Tree Plant Physiol. 130, 757-769, (2002) DOI: 10.1104/pp.005892

Using a combination of protein isolation/characterization and molecular cloning, we have demonstrated that the bark of the black mulberry tree (Morus nigra) accumulates large quantities of a galactose-specific (MornigaG) and a mannose (Man)-specific (MornigaM) jacalin-related lectin. MornigaG resembles jacalin with respect to its molecular structure, specificity, and co- and posttranslational processing indicating that it follows the secretory pathway and eventually accumulates in the vacuolar compartment. In contrast, MornigaM represents a novel type of highly active Man-specific jacalin-related lectin that is synthesized without signal peptide or other vacuolar targeting sequences, and accordingly, accumulates in the cytoplasm. The isolation and cloning, and immunocytochemical localization of MornigaG and MornigaM not only demonstrates that jacalin-related lectins act as vegetative storage proteins in bark, but also allows a detailed comparison of a vacuolar galactose-specific and a cytoplasmic Man-specific jacalin-related lectin from a single species. Moreover, the identification of MornigaM provides the first evidence, to our knowledge, that bark cells accumulate large quantities of a cytoplasmic storage protein. In addition, due to its high activity, abundance, and ease of preparation, MornigaM is of great potential value for practical applications as a tool and bioactive protein in biological and biomedical research.
IPB Mainnav Search