jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Schrick, K.; Mayer, U.; Martin, G.; Bellini, C.; Kuhnt, C.; Schmidt, J.; Jürgens, G.; Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis Plant J. 31, 61-73, (2002) DOI: 10.1046/j.1365-313X.2002.01333.x

The sterol biosynthesis pathway of Arabidopsis produces a large set of structurally related phytosterols including sitosterol and campesterol, the latter being the precursor of the brassinosteroids (BRs). While BRs are implicated as phytohormones in post‐embryonic growth, the functions of other types of steroid molecules are not clear. Characterization of the fackel (fk ) mutants provided the first hint that sterols play a role in plant embryogenesis. FK encodes a sterol C‐14 reductase that acts upstream of all known enzymatic steps corresponding to BR biosynthesis mutants. Here we report that genetic screens for fk‐like seedling and embryonic phenotypes have identified two additional genes coding for sterol biosynthesis enzymes: CEPHALOPOD (CPH), a C‐24 sterol methyl transferase, and HYDRA1 (HYD1), a sterol C‐8,7 isomerase. We describe genetic interactions between cph , hyd1 and fk , and studies with 15‐azasterol, an inhibitor of sterol C‐14 reductase. Our experiments reveal that FK and HYD1 act sequentially, whereas CPH acts independently of these genes to produce essential sterols. Similar experiments indicate that the BR biosynthesis gene DWF1 acts independently of FK , whereas BR receptor gene BRI1 acts downstream of FK to promote post‐embryonic growth. We found embryonic patterning defects in cph mutants and describe a GC–MS analysis of cph tissues which suggests that steroid molecules in addition to BRs play critical roles during plant embryogenesis. Taken together, our results imply that the sterol biosynthesis pathway is not a simple linear pathway but a complex network of enzymes that produce essential steroid molecules for plant growth and development.
Publications

Li, S.-M.; Westrich, L.; Schmidt, J.; Kuhnt, C.; Heide, L.; Methyltransferase genes in Streptomyces rishiriensis: new coumermycin derivatives from gene-inactivation experiments Microbiol. 148, 3317-3326, (2002) DOI: 10.1099/00221287-148-10-3317

The coumarin antibiotic coumermycin A1 contains at least eight methyl groups, presumably derived from S-adenosylmethionine. Two putative methyltransferase genes, couO and couP, of the coumermycin A1 biosynthetic gene cluster were inactivated by in-frame deletion. In the resulting mutants, coumermycin A1 production was abolished. New coumermycin derivatives were accumulated instead, and were identified by HPLC-MS using selected reaction monitoring via electrospray ionization. couO mutants accumulated a coumermycin derivative lacking the methyl groups at C-8 of the characteristic aminocoumarin rings, whereas in the couP mutant a coumermycin derivative lacking the methyl groups at the 4-hydroxyl groups of the two deoxysugar moieties was identified. These results provided evidence that couO encodes a C-methyltransferase responsible for the transfer of a methyl group to C-8 of the aminocoumarin ring, and couP an O-methyltransferase for methylation of 4-OH of the sugar in the biosynthesis of coumermycin A1, respectively. C-methylation of the aminocoumarin ring is considered as an early step of coumermycin biosynthesis. Nevertheless, the intermediates with the non-methylated aminocoumarin ring were accepted by the enzymes catalysing the subsequent steps of the pathway. The new, demethylated secondary metabolites were produced in an amount at least as high as that of coumermycin A1 in the wild-type.
IPB Mainnav Search