jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 8 of 8.

Publications

Cherevatskaya, M.; Cherepanov, I.; Kalganova, N.; Erofeeva, N.; Romanovskaya, E.; Frolov, A.; Bilova, T.; Moiseev, S.; Wessjohann, L. A.; Sydnone imines as a new class of promising plant growth and stress tolerance modulators—A first experimental structure–activity overview Stresses 4, 133-154, (2024) DOI: 10.3390/stresses4010008

Due to the oncoming climate changes, various environmental stresses (drought, salinity, heavy-metals, low or high temperatures, etc.) might dramatically affect crop yields and the quality of produced foods. Therefore, to meet the growing food demand of the human population, improvement of stress tolerance of the currently cultured crops is required. The knowledge of the molecular underlying mechanisms provides a versatile instrument to correct plant metabolism via chemical tools and to thereby increase their adaptive potential. This will preserve crop productivity and quality under abiotic stress conditions. Endogenously produced nitric oxide (NO) is one of the key signaling factors activating stress tolerance mechanisms in plants. Thus, the application of synthetic NO donors as stress-protective phytoeffectors might support maintaining plant growth and productivity under stressful conditions. Sydnone imines (sydnonimines) are a class of clinically established mesoionic heterocyclic NO donors which represent a promising candidate group for such phytoeffectors. Therefore, here, we provide an overview of the current progress in the application of sydnone imines as exogenous NO donors in plants, with a special emphasis on their potential as herbicides as well as herbicide antidotes, growth stimulants and stress protectors triggering plant tolerance mechanisms. We specifically address the structure–activity relationships in the context of the growth modulating activity of sydnone imines. Growth stimulating or antidote effects are typical for 4-α-hydroxybenzyl derivatives of sydnone imines containing an alkyl substituent in position N-3. The nature of the substituent of the N-6 atom has a significant influence on the activity profile and the intensity of the effect. Nevertheless, further investigations are necessary to establish reliable structure–activity relationships (SAR). Consequently, sydnone imines might be considered promising phytoeffector candidates, which are expected to exert either protective effects on plants growing under unfavorable conditions, or herbicidal ones, depending on the exact structure.
Publications

Balarynová, J.; Klčová, B.; Sekaninová, J.; Kobrlová, L.; Cechová, M. Z.; Krejčí, P.; Leonova, T.; Gorbach, D.; Ihling, C.; Smržová, L.; Trněný, O.; Frolov, A.; Bednář, P.; Smýkal, P.; The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication New Phytol. 235, 1807–1821, (2022) DOI: 10.1111/nph.18256

Seed coats serve as protective tissue to the enclosed embryo. As well as mechanical there are also chemical defence functions. During domestication, the property of the seed coat was altered including the removal of the seed dormancy. We used a range of genetic, transcriptomic, proteomic and metabolomic approaches to determine the function of the pea seed polyphenol oxidase (PPO) gene. Sequencing analysis revealed one nucleotide insertion or deletion in the PPO gene, with the functional PPO allele found in all wild pea samples, while most cultivated peas have one of the three nonfunctional ppo alleles. PPO functionality cosegregates with hilum pigmentation. PPO gene and protein expression, as well as enzymatic activity, was downregulated in the seed coats of cultivated peas. The functionality of the PPO gene relates to the oxidation and polymerisation of gallocatechin in the seed coat. Additionally, imaging mass spectrometry supports the hypothesis that hilum pigmentation is conditioned by the presence of both phenolic precursors and sufficient PPO activity. Taken together these results indicate that the nonfunctional polyphenol oxidase gene has been selected during pea domestication, possibly due to better seed palatability or seed coat visual appearance.
Publications

Adem, A. A.; Belete, A.; Soboleva, A.; Frolov, A.; Tessema, E. N.; Gebre-Mariam, T.; Neubert, R. H.; Structural characterization of plant glucosylceramides and thecorresponding ceramides by UHPLC-LTQ-Orbitrap mass spectrometry J. Pharm. Biomed. Anal. 192, 113677, (2021) DOI: 10.1016/j.jpba.2020.113677

Ceramides (CERs) play a major role in skin barrier function and direct replacement of depleted skin CERs,due to skin disorder or aging, has beneficial effects in improving skin barrier function and skin hydration.Though, plants are reliable source of CERs, absence of economical and effective method of hydrolysis toconvert the dominant plant sphingolipid, glucosylceramides (GlcCERs), into CERs remains a challenge.This study aims at exploring alternative GlcCERs sources and chemical method of hydrolysis into CERsfor dermal application. GlcCERs isolated from lupin bean (Lupinus albus), mung bean (Vigna radiate) andnaked barley (Hordium vulgare) were identified using ultra high performance liquid chromatographyhyphenated with atmospheric pressure chemical ionization - high resolution tandem mass spectrometer(UHPLC/APCI-HRMS/MS) and quantified with validated automated multiple development-high perfor-mance thin layer chromatography (AMD-HPTLC) method. Plant GlcCERs were hydrolyzed into CERs withmild acid hydrolysis (0.1 N HCl) after treating them with oxidizing agent, NaIO4,and reducing agent,NaBH4. GlcCERs with 4,8-sphingadienine, 8-sphingenine and 4-hydroxy-8-sphingenine sphingoid baseslinked with C14 to C26 -hydroxylated fatty acids (FAs) were identified. Single GlcCER (m/z 714.5520)was dominant in lupin and mung beans while five major GlcCERs species (m/z 714.5520, m/z 742.5829,m/z 770.6144, m/z 842.6719 and m/z 844.56875) were obtained from naked barley. The GlcCERs con-tents of the three plants were comparable. However, lupin bean contains predominantly (> 98 %) a singleGlcCER (m/z 714.5520). Considering the affordability, GlcCER content and yield, lupin bean would bethe preferred alternative commercial source of GlcCERs. CER species bearing 4,8-sphingadienine and 8-sphingenine sphingoid bases attached to C14 to 24 FAs were found after mild acid hydrolysis. CER specieswith m/z 552.4992 was the main component in the beans while CER with m/z 608.5613 was dominantin the naked barley. However, CERs with 4-hydroxy-8-sphingenine sphingoid base were not detected inUHPLC-HRMS/MS study suggesting that the method works for mainly GlcCERs carrying dihydroxy sph-ingoid bases. The method is economical and effective which potentiates the commercialization of plantCERs for dermal application.
Publications

Farag, M. A.; Shakour, Z. T.; Lübken, T.; Frolov, A.; Wessjohann, L. A.; Mahrous, E.; Unraveling the metabolome composition and its implication for Salvadora persica L. use as dental brush via a multiplex approach of NMR and LC–MS metabolomics J. Pharm. Biomed. Anal. 193, 113727, (2021) DOI: 10.1016/j.jpba.2020.113727

Salvadora persica L. (toothbrush tree, Miswak) is well recognized in most Middle Eastern and African countries for its potential role in dental care, albeit the underlying mechanism for its effectiveness is still not fully understood. A comparative MS and NMR metabolomics approach was employed to investigate the major primary and secondary metabolites composition of S. persica in context of its organ type viz., root or stem to rationalize for its use as a tooth brush. NMR metabolomics revealed its enrichment in nitrogenous compounds including proline-betaines i.e., 4-hydroxy-stachydrine and stachydrine reported for the first time in S. persica. LC/MS metabolomics identified flavonoids (8), benzylurea derivatives (5), butanediamides (3), phenolic acids (8) and 5 sulfur compounds, with 21 constituents reported for the first time in S. persica. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) of either NMR or LC/MS dataset clearly separated stem from root specimens based on nitrogenous compounds abundance in roots and is justifying for its preference as toothbrush versus stems. The presence of betaines at high levels in S. persica (9−12 μg/mg dry weight) offers novel insights into its functioning as an osmoprotectant that maintains the hydration of oral mucosa. Additionally, the previously described anti-inflammatory activity of stachydrine along with the antimicrobial effects of sulfonated flavonoids, benzylisothiocynate and ellagic acid derivatives are likely contributors to S. persica oral hygiene health benefits. Among root samples, variation in sugars and organic acids levels were the main discriminatory criterion. This study provides the first standardization of S. persica extract using qNMR for further inclusion in nutraceuticals.
Publications

Smolikova, G.; Strygina, K.; Krylova, E.; Leonova, T.; Frolov, A.; Khlestkina, E.; Medvedev, S.; Transition from seeds to seedlings: Hormonal and epigenetic aspects Plants 10, 1884, (2021) DOI: 10.3390/plants10091884

Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network—the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes—POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.
Publications

Podolskaya, E. P.; Gladchuk, A. S.; Keltsieva, O. A.; Dubakova, P. S.; Silyavka, E. S.; Lukasheva, E.; Zhukov, V.; Lapina, N.; Makhmadalieva, M. R.; Gzgzyan, A. M.; Sukhodolov, N. G.; Krasnov, K. A.; Selyutin, A. A.; Frolov, A.; Thin Film Chemical Deposition Techniques as a Tool for Fingerprinting of Free Fatty Acids by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Anal. Chem. 91, 1636-1643, (2019) DOI: 10.1021/acs.analchem.8b05296

Metabolic fingerprinting is a powerful analytical technique, giving access to high-throughput identification and relative quantification of multiple metabolites. Because of short analysis times, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is the preferred instrumental platform for fingerprinting, although its power in analysis of free fatty acids (FFAs) is limited. However, these metabolites are the biomarkers of human pathologies and indicators of food quality. Hence, a high-throughput method for their fingerprinting is required. Therefore, here we propose a MALDI-TOF-MS method for identification and relative quantification of FFAs in biological samples of different origins. Our approach relies on formation of monomolecular Langmuir films (LFs) at the interphase of aqueous barium acetate solution, supplemented with low amounts of 2,5-dihydroxybenzoic acid, and hexane extracts of biological samples. This resulted in detection limits of 10–13–10–14 mol and overall method linear dynamic range of at least 4 orders of magnitude with accuracy and precision within 2 and 17%, respectively. The method precision was verified with eight sample series of different taxonomies, which indicates a universal applicability of our approach. Thereby, 31 and 22 FFA signals were annotated by exact mass and identified by tandem MS, respectively. Among 20 FFAs identified in Fucus algae, 14 could be confirmed by gas chromatography-mass spectrometry.
Publications

Farag, M. A.; El-Kersh, D. M.; Ehrlich, A.; Choucry, M. A.; El-Seedi, H.; Frolov, A.; Wessjohann, L. A.; Variation in Ceratonia siliqua pod metabolome in context of its different geographical origin, ripening stage and roasting process Food Chem. 283, 675-687, (2019) DOI: 10.1016/j.foodchem.2018.12.118

Carob is a legume tree of a considerable commercial importance for the flavor and sweet industry. In this context, it is cultivated mostly for its pods, which are known for their nutritive value and multiple health benefits. However, metabolite patterns, underlying these properties are still mostly uncharacterized. In this study, the role of geographical origin, ontogenetic changes and thermal processing on the Ceratonia siliqua pod metabolome was assessed by mass spectrometry (MS)-based metabolomics. Thereby, a total of 70 fruits primary metabolites, represented mainly by carbohydrates, organic and amino acids were detected. Analysis of secondary bioactive metabolites assessed by ultra-high-performance liquid chromatography-electrospray ionization high resolution mass spectrometry (UHPLC-ESI-HR-MS) revealed in total 83 signals. The major signals, most significantly contributing in discrimination of C. siliqua specimens were assigned to tannins and flavonoids. PCA models derived from either UHPLC-MS or GC-MS proved to be powerful tools for discrimination of C. siliqua specimens.
Publications

Frolov, A.; Didio, A.; Ihling, C.; Chantzeva, V.; Grishina, T.; Hoehenwarter, W.; Sinz, A.; Smolikova, G.; Bilova, T.; Medvedev, S.; The effect of simulated microgravity on the Brassica napus seedling proteome Funct. Plant Biol. 45, 440-452, (2018) DOI: 10.1071/FP16378

The magnitude and the direction of the gravitational field represent an important environmental factor affecting plant development. In this context, the absence or frequent alterations of the gravity field (i.e. microgravity conditions) might compromise extraterrestrial agriculture and hence space inhabitation by humans. To overcome the deleterious effects of microgravity, a complete understanding of the underlying changes on the macromolecular level is necessary. However, although microgravity-related changes in gene expression are well characterised on the transcriptome level, proteomic data are limited. Moreover, information about the microgravity-induced changes in the seedling proteome during seed germination and the first steps of seedling development is completely missing. One of the valuable tools to assess gravity-related issues is 3D clinorotation (i.e. rotation in two axes). Therefore, here we address the effects of microgravity, simulated by a two-axial clinostat, on the proteome of 24- and 48-h-old seedlings of oilseed rape (Brassica napus L.). The liquid chromatography-MS-based proteomic analysis and database search revealed 95 up- and 38 downregulated proteins in the tryptic digests obtained from the seedlings subjected to simulated microgravity, with 42 and 52 annotations detected as being unique for 24- and 48-h treatment times, respectively. The polypeptides involved in protein metabolism, transport and signalling were annotated as the functional groups most strongly affected by 3-D clinorotation.
IPB Mainnav Search