jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 10 of 16.

Publications

Lam, Y. T. H.; Hoppe, J.; Dang, Q. N.; Porzel, A.; Soboleva, A.; Brandt, W.; Rennert, R.; Hussain, H.; Davari, M. D.; Wessjohann, L.; Arnold, N.; Purpurascenines A–C, azepino-indole alkaloids from Cortinarius purpurascens: Isolation, biosynthesis, and activity studies on the 5-HT2A receptor J. Nat. Prod. 86, 1373-1384, (2023) DOI: 10.1021/acs.jnatprod.2c00716

Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.
Publications

Lam, Y. T. H.; Ricardo, M. G.; Rennert, R.; Frolov, A.; Porzel, A.; Brandt, W.; Stark, P.; Westermann, B.; Arnold, N.; Rare glutamic acid methyl ester peptaibols from Sepedonium ampullosporum Damon KSH 534 exhibit promising antifungal and anticancer activity Int. J. Mol. Sci. 22, 12718, (2021) DOI: 10.3390/ijms222312718

Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1–3).
Publications

Ditfe, T.; Bette, E.; N. Sultani, H.; Otto, A.; Wessjohann, L. A.; Arnold, N.; Westermann, B.; Synthesis and biological evaluation of highly potent fungicidal deoxy‐hygrophorones Eur. J. Org. Chem. 2021, 3827-3836, (2021) DOI: 10.1002/ejoc.202100729

Although stripped from hydroxyl-groups, deoxygenated hygrophorones remain highly active against severe phytopathogens. The synthesis to these natural product congeners is achieved in rearrangement sequences, with an optimized deprotection strategy avoiding retro-aldol reactions. The activities are comparable to fungicides used in agriculture. Based on naturally occurring hygrophorones, racemic di- and mono-hydroxylated cyclopentenones bearing an aliphatic side chain have been produced in short synthetic sequences starting from furfuryl aldehyde. For the series of dihydroxylated trans-configured derivatives, an Achmatowicz-rearrangement and a Caddick-ring contraction were employed, and for the series of trans-configured mono-hydroxylated derivatives a Piancatelli-rearrangement. All final products showed good to excellent fungicidal activities against the plant pathogens B. cinerea, S. tritici and P. infestans.
Publications

Chuankid, B.; Schrey, H.; Thongbai, B.; Raspé, O.; Arnold, N.; Hyde, K. D.; Stadler, M.; Secondary metabolites of Phlebopus species from Northern Thailand Mycol. Prog. 19, 1525-1536, (2020) DOI: 10.1007/s11557-020-01643-y

AbstractSubmerged cultures of the edible mushrooms Phlebopus portentosus and Phlebopus spongiosus were screened for their secondary metabolites by HPLC-UV/Vis and HR-LC-ESI-MS. Two new compounds, 9′-hydroxyphenyl pulvinone (1), containing an unusual pulvinone structure, and phlebopyron (2), together with the seven known pigments, atromentic acid (3), xerocomic acid (4), variegatic acid (5), methyl atromentate (6), methyl isoxerocomate (7), methyl variegatate (8), and variegatorubin (9) were isolated from the cultures. Their structures were assigned on the basis of extensive 1D/2D NMR spectroscopic analyses, as well as HR-ESI-MS, and HR-ESI-MS/MS measurements. Furthermore, the isolated compounds were evaluated for their antimicrobial and cytotoxic properties. 9′-hydroxyphenyl pulvinone (1), xerocomic acid (4), and methyl variegatate (8) exhibited weak to moderate cytotoxic activities against several tumor cell lines. The present paper provides a comprehensive characterization of pigments from the class of pulvinic acids that are present in the basidiomes of many edible bolete species.
Publications

Palfner, G.; GALLEGUILLOS, F.; Arnold, N.; CASANOVA-KATNY, A.; HORAK, E.; Sequestrate syndrome in Bondarzewia guaitecasensis (Fungi, Basidiomycota)? The case of Hybogaster giganteus revisited Phytotaxa 474, 272-282, (2020) DOI: 10.11646/phytotaxa.474.3.6

Based on comparison of molecular, morphological and ecological data, we propose that Hybogaster giganteus Singer, a parasitic basidiomycete on stem bases and coarse roots of Nothofagus in Chile, is conspecifically related to the sympatric Bondarzewia guaitecasensis. According to our concept, H. giganteus is representing a sequestrate form of the latter and is hence recombined and formally described as Bondarzewia guaitecasensis f. gigantea; we further discuss the evidence that its sequestrate morphology may provide higher resistance to drought stress in early autumn, extending the sporulation season of the species.
Publications

Reisberg, M.; Arnold, N.; Bisrat, D.; Asres, K.; Neubert, R. H.; Dräger, B.; Quantification of glycosylceramides in plants by automated multiple development–high-performance thin-layer chromatography JPC - J. Planar Chromat. 30, 460-466, (2017) DOI: 10.1556/1006.2017.30.6.1

Glycosylceramides (GlyCers) are precursors of ceramides (Cers) that are major components of the outer layer of human skin, the stratum corneum. A Cer deficiency is associated with skin diseases such as psoriasis and atopic dermatitis and can be treated with Cer-containing semisolid formulations. Plants may serve as alternative sources for expensive semisynthetic Cer production. Since the GlyCer contents of plants vary widely, there is a need to develop a rapid, simple, selective, and precise method for GlyCer quantification in plants. In the present study, an effective and validated automated multiple development‒high-performance thin-layer chromatography (AMD‒HPTLC) method has been developed for GlyCer quantification in 9 different plant materials. An 18-step gradient elution program (n-hexane, chloroform, ethyl acetate, methanol) led to a clear separation of bands from complex matrices and allowed densitometric analysis for quantification purposes. Apple pomace and wheat germs yielded 26.8 and 39.5 mg of GlyCer per 100 g plant material, respectively, while the yields of coffee grounds were below the limit of quantification. The GlyCer contents of the seeds of six Fabaceae species, namely, Albizia grandibracteata, Albizia gummifera, Albizia lebbeck, Albizia schimperiana, Acacia etbaica, and Robinia pseudoacacia, ranged from 9.4 to 23.1 mg per 100 g plant material. GlyCers were separated by preparative thin-layer chromatography (TLC) and identified by offline high-performance liquid chromatography–mass spectrometry (HPLC–MS). Intact GlyCers were detected in the Fabaceae species for the first time. A simple AMD–HPTLC screening and quantification technique for GlyCers was developed, which may serve as a tool in searching plant GlyCers for a possible “phyto”-Cer production.
Publications

Reisberg, M.; Arnold, N.; Porzel, A.; Neubert, R. H. H.; Dräger, B.; Production of Rare Phyto-Ceramides from Abundant Food Plant Residues J. Agr. Food Chem. 65, 1507-1517, (2017) DOI: 10.1021/acs.jafc.6b04275

Ceramides (Cers) are major components of the outermost layer of the skin, the stratum corneum, and play a crucial role in permeability barrier functions. Alterations in Cer composition causing skin diseases are compensated with semisynthetic skin-identical Cers. Plants constitute new resources for Cer production as they contain glucosylceramides (GluCers) as major components. GluCers were purified from industrial waste plant materials, apple pomace (Malus domestica), wheat germs (Triticum sp.), and coffee grounds (Coffea sp.), with GluCer contents of 28.9 mg, 33.7 mg, and 4.4 mg per 100 g of plant material. Forty-five species of GluCers (1–45) were identified with different sphingoid bases, saturated or monounsaturated α-hydroxy fatty acids (C15–28), and β-glucose as polar headgroup. Three main GluCers were hydrolyzed by a recombinant human glucocerebrosidase to produce phyto-Cers (46–48). These studies showed that rare and expensive phyto-Cers can be obtained from industrial food plant residues.
Publications

Otto, A.; Porzel, A.; Westermann, B.; Brandt, W.; Wessjohann, L.; Arnold, N.; Structural and stereochemical elucidation of new hygrophorones from Hygrophorus abieticola (Basidiomycetes) Tetrahedron 73, 1682-1690, (2017) DOI: 10.1016/j.tet.2017.02.013

Four new hygrophorones (1–4) together with the known hygrophorone B12 (5) have been isolated from fruiting bodies of the basidiomycete Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky. Their structures were assigned on the basis of extensive one and two dimensional NMR spectroscopic analyses as well as ESI-HRMS measurements. Among these compounds, two previously undescribed hygrophorone types, named hygrophorone H12 (3) and 2,3-dihydrohygrophorone H12 (4), were identified. The absolute configuration of hygrophorone E12 (2) is suggested based on quantum chemical CD calculations, while a semisynthetic approach in conjunction with computational studies and analysis of NOE interactions allowed the stereochemical assignment of compounds 3 and 4. Additionally, semisynthetic derivatives of hygrophorone B12 (5) were generated by acetylation of the hydroxyl groups. The biological activity of the natural and semisynthetic hygrophorones was evaluated against phytopathogenic organisms, revealing that the α,β-unsaturated carbonyl functionality is likely to be an essential structural feature. Hygrophorone B12 (5) was identified as the most active compound, acting against both ascomycetous fungi and oomycetes.
Publications

Otto, A.; Laub, A.; Haid, M.; Porzel, A.; Schmidt, J.; Wessjohann, L.; Arnold, N.; Tulasporins A–D, 19-Residue Peptaibols from the Mycoparasitic Fungus Sepedonium tulasneanum Nat. Prod. Commun. 11, 1821-1824, (2016) DOI: 10.1177/1934578X1601101212

Four new 19-residue peptaibols, named tulasporins A–D (1–4), were isolated from the semi-solid cultures of Sepedonium tulasneanum. Their structures were elucidated on the basis of extensive ESI-HRMSn fragmentation studies as well as 1H NMR spectroscopic analyses. Interestingly, the structures of tulasporins A–D (1–4) resemble those of chrysospermins isolated earlier from cultures of S. chrysospermum. Previously, it was hypothesized that the peptaibol production by Sepedonium species correlates with the morphology of the aleurioconidia, as exclusively round-shaped aleurioconidia forming species produced peptaibols. Since the investigated Sepedonium tulasneanum produces oval aleurioconidia, this study can be considered as the first report of peptaibols from a Sepedonium strain with oval-shaped aleurioconidia. Thus, it could be demonstrated that both round as well as oval aleurioconidia forming Sepedonium species are able to produce peptaibols. Tulasporins A-D (1–4), when tested against phytopathogenic fungi, exhibited good growth inhibitory activity against both Botrytis cinerea and Phytophthora infestans, while they were devoid of significant activity against Septoria tritici.
Publications

Otto, A.; Porzel, A.; Schmidt, J.; Brandt, W.; Wessjohann, L.; Arnold, N.; Structure and Absolute Configuration of Pseudohygrophorones A12 and B12, Alkyl Cyclohexenone Derivatives from Hygrophorus abieticola (Basidiomycetes) J. Nat. Prod. 79, 74-80, (2016) DOI: 10.1021/acs.jnatprod.5b00675

Pseudohygrophorones A(12) (1) and B(12) (2), the first naturally occurring alkyl cyclohexenones from a fungal source, and the recently reported hygrophorone B(12) (3) have been isolated from fruiting bodies of the basidiomycete Hygrophorus abieticola Krieglst. ex Gröger & Bresinsky. Their structures were assigned on the basis of extensive one- and two-dimensional NMR spectroscopic analysis as well as ESI-HRMS measurements. The absolute configuration of the three stereogenic centers in the diastereomeric compounds 1 and 2 was established with the aid of (3)JH,H and (4)JH,H coupling constants, NOE interactions, and conformational analysis in conjunction with quantum chemical CD calculations. It was concluded that pseudohygrophorone A(12) (1) is 4S,5S,6S configured, while pseudohygrophorone B(12) (2) was identified as the C-6 epimer of 1, corresponding to the absolute configuration 4S,5S,6R. In addition, the mass spectrometric fragmentation behavior of 1-3 obtained by the higher energy collisional dissociation method allows a clear distinction between the pseudohygrophorones (1 and 2) and hygrophorone B(12) (3). The isolated compounds 1-3 exhibited pronounced activity against phytopathogenic organisms.
IPB Mainnav Search