jump to searchjump to navigationjump to content

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Nishiyama, T.; Sakayama, H.; de Vries, J.; Buschmann, H.; Saint-Marcoux, D.; Ullrich, K. K.; Haas, F. B.; Vanderstraeten, L.; Becker, D.; Lang, D.; Vosolsobě, S.; Rombauts, S.; Wilhelmsson, P. K.; Janitza, P.; Kern, R.; Heyl, A.; Rümpler, F.; Calderón Villalobos, L. I. A.; Clay, J. M.; Skokan, R.; Toyoda, A.; Suzuki, Y.; Kagoshima, H.; Schijlen, E.; Tajeshwar, N.; Catarino, B.; Hetherington, A. J.; Saltykova, A.; Bonnot, C.; Breuninger, H.; Symeonidi, A.; Radhakrishnan, G. V.; Van Nieuwerburgh, F.; Deforce, D.; Chang, C.; Karol, K. G.; Hedrich, R.; Ulvskov, P.; Glöckner, G.; Delwiche, C. F.; Petrášek, J.; Van de Peer, Y.; Friml, J.; Beilby, M.; Dolan, L.; Kohara, Y.; Sugano, S.; Fujiyama, A.; Delaux, P.-M.; Quint, M.; Theißen, G.; Hagemann, M.; Harholt, J.; Dunand, C.; Zachgo, S.; Langdale, J.; Maumus, F.; Van Der Straeten, D.; Gould, S. B.; Rensing, S. A.; The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization Cell 174, 448-464.e24, (2018) DOI: 10.1016/j.cell.2018.06.033

Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.
Publications

Winkler, M.; Niemeyer, M.; Hellmuth, A.; Janitza, P.; Christ, G.; Samodelov, S. L.; Wilde, V.; Majovsky, P.; Trujillo, M.; Zurbriggen, M. D.; Hoehenwarter, W.; Quint, M.; Calderón Villalobos, L. I. A.; Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction Nat. Commun. 8, 15706, (2017) DOI: 10.1038/ncomms15706

Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.
IPB Mainnav Search