jump to searchjump to navigationjump to content

Publications - Molecular Signal Processing

Sort by: sort ascending Year Type of publication

Displaying results 81 to 90 of 362.

Publications

Schwechheimer, C.; Calderón Villalobos, L.I. Cullin-containing E3 ubiquitin ligases in plant development Curr. Opin. Plant Biol. 7(6), 677-686, (2002)

In eukaryotes, the ubiquitinproteasome system participates in the control of signal transduction events by selectively eliminating regulatory proteins. E3 ubiquitin ligases specifically bind degradation substrates and mediate their poly-ubiquitylation, a prerequisite for their degradation by the 26S proteasome. On the basis of the analysis of the Arabidopsis genome sequence, it is predicted that there are more than 1000 E3 ubiquitin ligases in plants. Several types of E3 ubiquitin ligases have already been characterized in eukaryotes. Recently, some of these E3 enzymes have been implicated in specific plant signaling pathways.
Publications

Dussle, C.M.; Quint, M.; Xu, M.L.; Melchinger, A.E.; Lübberstedt, T. Conversion of AFLP fragments tightly linked to Scmv1 and Scmv2 into simple PCR-based markers Theor Appl Genet 105, 1190-1195, (2002)

0
Publications

Laskowski, M.J.; Dreher, K.A.; Gehring, M.; Abel, S.; Gensler, A.; Sussex, I.M. FQR1, a novel primary auxin-response gene, encodes an FMN-binding quinone reductase. Plant Physiology 128, 578-686, (2002)

FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating thatFQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated fromEscherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathioneS-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.
Publications

Nibbe, M.; Hilpert, B.; Wasternack, C.; Miersch, O.; Apel, K. Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes Planta 216, 120-128, (2002)

0
Publications

Abdala, G.; Castro, G.; Miersch, O.; Pierce, D. Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum) Plant Growth Reg. 36, 121-126, (2002)

0
Publications

Schilling, S.; Hoffmann, T.; Wermann, M.; Heiser, U.; Wasternack, C.; Demuth, H.-U. Continuous spectrometric assays for glutaminyl cyclase activity Analytical Biochemistry 303, 49-56, (2002)

0
Publications

Schilling, S.; Hoffmann, T.; Rosche, F.; Manhart, S.; Wasternack, C.; Demuth, H.-U. Heterologous expression and characterization of human glutaminyl cyclase: evidence for a disulfide bond with importance for catalytic activity Biochemistry 41, 10849-10857, (2002)

0
Publications

Quint, M.; Mihaljevic, R.; Dussle, C.M.; Xu, M.L.; Melchinger, A.E.; Lübberstedt, T. Development of RGA-CAPS markers and genetic mapping of candidate genes for SCMV resistance in maize Theor Appl Genet 105, 355-366, (2002)

0
Publications

Vigliocco, A.; Bonamico, M.B.; Alemano, S.; Miersch, O.; Abdala, G. Activation of jasmonic acid production in <EM>Zea mays</EM> L. infected by the maize rough dwarf virus-Río Cuarto. Reversion of symptoms by salicylic acid Biocell 26(3), 369-374, (2002)

0
Publications

Gidda, K.S.; Miersch, O.; Schmidt, J.; Wasternack, C.; Varin, L. Biochemical and molecular characterization of a hydroxy-jasmonate sulfotransferase from Arabidopsis thaliana J. Biol. Chem. 278, 17895-17900, (2003) DOI: 10.1074/jbc.M211943200

12-Hydroxyjasmonate, also known as tuberonic acid, was first isolated from Solanum tuberosum and was shown to have tuber-inducing properties. It is derived from the ubiquitously occurring jasmonic acid, an important signaling molecule mediating diverse developmental processes and plant defense responses. We report here that the gene AtST2a from Arabidopsis thaliana encodes a hydroxyjasmonate sulfotransferase. The recombinant AtST2a protein was found to exhibit strict specificity for 11- and 12-hydroxyjasmonate with Km values of 50 and 10 µM, respectively. Furthermore, 12-hydroxyjasmonate and its sulfonated derivative are shown to be naturally occurring in A. thaliana. The exogenous application of methyljasmonate to A. thaliana plants led to increased levels of both metabolites, whereas treatment with 12-hydroxyjasmonate led to increased level of 12-hydroxyjasmonate sulfate without affecting the endogenous level of jasmonic acid. AtST2a expression was found to be induced following treatment with methyljasmonate and 12-hydroxyjasmonate. In contrast, the expression of the methyljasmonate-responsive gene Thi2.1, a marker gene in plant defense responses, is not induced upon treatment with 12-hydroxyjasmonate indicating the existence of independent signaling pathways responding to jasmonic acid and 12-hydroxyjasmonic acid. Taken together, the results suggest that the hydroxylation and sulfonation reactions might be components of a pathway that inactivates excess jasmonic acid in plants. Alternatively, the function of AtST2a might be to control the biological activity of 12-hydroxyjasmonic acid.
IPB Mainnav Search