jump to searchjump to navigationjump to content

Publications - Molecular Signal Processing

Sort by: Year Type of publication

Displaying results 31 to 40 of 465.

Publications

Prasad, A.; Breithaupt, C.; Nguyen, D.-A.; Lilie, H.; Ziegler, J.; Stubbs, M. T.; Mechanism of chorismate dehydratase MqnA, the first enzyme of the futalosine pathway, proceeds via substrate-assisted catalysis J. Biol. Chem. 298, 102601, (2022) DOI: 10.1016/j.jbc.2022.102601

MqnA, the only chorismate dehydratase known so far, catalyzes the initial step in the biosynthesis of menaquinone via the futalosine pathway. Details of the MqnA reaction mechanism remain unclear. Here, we present crystal structures of Streptomyces coelicolor MqnA and its active site mutants in complex with chorismate and the product 3-enolpyruvyl-benzoate, produced during heterologous expression in Escherichia coli. Together with activity studies, our data are in line with dehydration proceeding via substrate assisted catalysis, with the enol pyruvyl group of chorismate acting as catalytic base. Surprisingly, structures of the mutant Asn17Asp with copurified ligand suggest that the enzyme converts to a hydrolase by serendipitous positioning of the carboxyl group. All complex structures presented here exhibit a closed Venus flytrap fold, with the enzyme exploiting the characteristic ligand binding properties of the fold for specific substrate binding and catalysis. The conformational rearrangements that facilitate complete burial of substrate/product, with accompanying topological changes to the enzyme surface, could foster substrate channeling within the biosynthetic pathway.
Publications

Naumann, C.; Heisters, M.; Brandt, W.; Janitza, P.; Alfs, C.; Tang, N.; Toto Nienguesso, A.; Ziegler, J.; Imre, R.; Mechtler, K.; Dagdas, Y.; Hoehenwarter, W.; Sawers, G.; Quint, M.; Abel, S.; Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development Curr. Biol. 32, 2189-2205, (2022) DOI: 10.1016/j.cub.2022.04.005

Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi sta-tus are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼2 μmM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Preprints

Yang, B.; Stamm, G.; Bürstenbinder, K.; Voiniciuc, C.; Microtubule-associated IQD9 guides cellulose synthase velocity to shape seed mucilage bioRxiv (2021) DOI: 10.1101/2021.12.11.472226

SummaryArabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes is guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis (SCE).Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles for cell wall polysaccharide biosynthesis and cortical microtubule (MT) organization.Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. Double mutant analyses revealed that their closest paralogs (IQD10 and KLCR2, respectively) are not required for mucilage biosynthesis. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. Similar to the previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein, IQD9 is required to maintain the velocity of cellulose synthases.Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in guiding the distribution of cell wall polysaccharides. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.
Publications

Ziegler, J.; Bochnia, M.; Zeyner, A.; Aminosäurennachweis in geringsten ProbenmengenBestimmung von Hypoglycin A Wiley Analytical Science (2021)

0
Publications

Zang, J.; Klemm, S.; Pain, C.; Duckney, P.; Bao, Z.; Stamm, G.; Kriechbaumer, V.; Bürstenbinder, K.; Hussey, P. J.; Wang, P.; A novel plant actin-microtubule bridging complex regulates cytoskeletal and ER structure at ER-PM contact sites Curr. Biol. 31, 1251-1260, (2021) DOI: 10.1016/j.cub.2020.12.009

In plants, the cortical endoplasmic reticulum (ER) network is connected to the plasma membrane (PM) through the ER-PM contact sites (EPCSs), whose structures are maintained by EPCS resident proteins and the cytoskeleton.1-7 Strong co-alignment between EPCSs and the cytoskeleton is observed in plants,1,8 but little is known of how the cytoskeleton is maintained and regulated at the EPCS. Here, we have used a yeast-two-hybrid screen and subsequent in vivo interaction studies in plants by fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) analysis to identify two microtubule binding proteins, KLCR1 (kinesin-light-chain-related protein 1) and IQD2 (IQ67-domain 2), that interact with the actin binding protein NET3C and form a component of plant EPCS that mediates the link between the actin and microtubule networks. The NET3C-KLCR1-IQD2 module, acting as an actin-microtubule bridging complex, has a direct influence on ER morphology and EPCS structure. Their loss-of-function mutants, net3a/NET3C RNAi, klcr1, or iqd2, exhibit defects in pavement cell morphology, which we suggest is linked to the disorganization of both actin filaments and microtubules. In conclusion, our results reveal a novel cytoskeletal-associated complex, which is essential for the maintenance and organization of cytoskeletal structure and ER morphology at the EPCS and for normal plant cell morphogenesis.
Publications

Vaddepalli, P.; de Zeeuw, T.; Strauss, S.; Bürstenbinder, K.; Liao, C.-Y.; Ramalho, J. J.; Smith, R. S.; Weijers, D.; Auxin-dependent control of cytoskeleton and cell shape regulates division orientation in the Arabidopsis embryo Curr. Biol. 31, 4946-4955, (2021) DOI: 10.1016/j.cub.2021.09.019

Premitotic control of cell division orientation is critical for plant development, as cell walls prevent extensive cell remodeling or migration. While many divisions are proliferative and add cells to existing tissues, some divisions are formative and generate new tissue layers or growth axes. Such formative divisions are often asymmetric in nature, producing daughters with different fates. We have previously shown that, in the Arabidopsis thaliana embryo, developmental asymmetry is correlated with geometric asymmetry, creating daughter cells of unequal volume. Such divisions are generated by division planes that deviate from a default “minimal surface area” rule. Inhibition of auxin response leads to reversal to this default, yet the mechanisms underlying division plane choice in the embryo have been unclear. Here, we show that auxin-dependent division plane control involves alterations in cell geometry, but not in cell polarity axis or nuclear position. Through transcriptome profiling, we find that auxin regulates genes controlling cell wall and cytoskeleton properties. We confirm the involvement of microtubule (MT)-binding proteins in embryo division control. Organization of both MT and actin cytoskeleton depends on auxin response, and genetically controlled MT or actin depolymerization in embryos leads to disruption of asymmetric divisions, including reversion to the default. Our work shows how auxin-dependent control of MT and actin cytoskeleton properties interacts with cell geometry to generate asymmetric divisions during the earliest steps in plant development.Graphical abstract
Publications

Chutia, R.; Scharfenberg, S.; Neumann, S.; Abel, S.; Ziegler, J.; Modulation of phosphate deficiency-induced metabolic changes by iron availability in Arabidopsis thaliana Int. J. Mol. Sci. 22, 7609, (2021) DOI: 10.3390/ijms22147609

Concurrent suboptimal supply of several nutrients requires the coordination of nutrient-specific transcriptional, phenotypic, and metabolic changes in plants in order to optimize growth and development in most agricultural and natural ecosystems. Phosphate (Pi) and iron (Fe) deficiency induce overlapping but mostly opposing transcriptional and root growth responses in Arabidopsis thaliana. On the metabolite level, Pi deficiency negatively modulates Fe deficiency-induced coumarin accumulation, which is controlled by Fe as well as Pi deficiency response regulators. Here, we report the impact of Fe availability on seedling growth under Pi limiting conditions and on Pi deficiency-induced accumulation of amino acids and organic acids, which play important roles in Pi use efficiency. Fe deficiency in Pi replete conditions hardly changed growth and metabolite profiles in roots and shoots of Arabidopsis thaliana, but partially rescued growth under conditions of Pi starvation and severely modulated Pi deficiency-induced metabolic adjustments. Analysis of T-DNA insertion lines revealed the concerted coordination of metabolic profiles by regulators of Fe (FIT, bHLH104, BRUTUS, PYE) as well as of Pi (SPX1, PHR1, PHL1, bHLH32) starvation responses. The results show the interdependency of Pi and Fe availability and the interplay between Pi and Fe starvation signaling on the generation of plant metabolite profiles.
Publications

Bochnia, M.; Ziegler, J.; Glatter, M.; Zeyner, A.; Hypoglycin A in cow’s milk—A pilot study Toxins 13, 381, (2021) DOI: 10.3390/toxins13060381

Hypoglycin A (HGA) originating from soapberry fruits (litchi, and ackee) seeds or seedlings from the sycamore maple (SM) tree (related to Sapindaceae) may cause Jamaican vomiting sickness in humans and atypical myopathy in horses and ruminants. A possible transfer into dairy cow’s milk cannot be ruled out since the literature has revealed HGA in the milk of mares and in the offal of captured deer following HGA intoxication. From a study, carried out for another purpose, bulk raw milk samples from four randomly selected dairy farms were available. The cows were pastured in the daytime. A sycamore maple tree was found on the pasture of farm No. 1 only. Bulk milk from the individual tank or milk filling station was sampled in parallels and analyzed for HGA by LC-ESI-MS/MS. Measurable concentrations of HGA occurred only in milk from farm No. 1 and amounted to 120 and 489 nmol/L. Despite low and very variable HGA concentrations, the results indicate that the ingested toxin, once eaten, is transferred into the milk. However, it is unknown how much HGA the individual cow ingested during grazing and what amount was transferred into the bulk milk samples. As a prerequisite for a possible future safety assessment, carry-over studies are needed. Furthermore, the toxins’ stability during milk processing should also be investigated as well.
Publications

Bao, Z.; Xu, Z.; Zang, J.; Bürstenbinder, K.; Wang, P.; The Morphological Diversity of Plant Organs: Manipulating the Organization of Microtubules May Do the Trick Front Cell Dev Biol 9, 649626, (2021) DOI: 10.3389/fcell.2021.649626

0
Publications

Mielke, S.; Zimmer, M.; Meena, M. K.; Dreos, R.; Stellmach, H.; Hause, B.; Voiniciuc, C.; Gasperini, D.; Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression Sci. Adv. 7, eabf0356, (2021) DOI: 10.1126/sciadv.abf0356

Despite the vital roles of jasmonoyl-isoleucine (JA-Ile) in governing plant growth and environmental acclimation, it remains unclear what intracellular processes lead to its induction. Here, we provide compelling genetic evidence that mechanical and osmotic regulation of turgor pressure represents a key elicitor of JA-Ile biosynthesis. After identifying cell wall mutant alleles in KORRIGAN1 (KOR1) with elevated JA-Ile in seedling roots, we found that ectopic JA-Ile resulted from cell nonautonomous signals deriving from enlarged cortex cells compressing inner tissues and stimulating JA-Ile production. Restoring cortex cell size by cell type–specific KOR1 complementation, by isolating a genetic kor1 suppressor, and by lowering turgor pressure with hyperosmotic treatments abolished JA-Ile signaling. Conversely, hypoosmotic treatment activated JA-Ile signaling in wild-type plants. Furthermore, constitutive JA-Ile levels guided mutant roots toward greater water availability. Collectively, these findings enhance our understanding on JA-Ile biosynthesis initiation and reveal a previously undescribed role of JA-Ile in orchestrating environmental resilience.
IPB Mainnav Search