jump to searchjump to navigationjump to content

Publications - Molecular Signal Processing

Sort by: sort ascending Year Type of publication

Displaying results 1 to 10 of 13.

Publications

Harms, K.; Atzorn, R.; Brash, A.; Kühn, H.; Wasternack, C.; Willmitzer, L.; Peña-Cortés, H. Expression of a flax allene oxide synthase cDNA leads to an increase in the endogenous jasmonic acid level in transgenic potato plants but not to a corresponding activation of jasmonic acid-responding genes The Plant Cell 7, 1645-1654, (1995)

0
Publications

Herde, O.; Atzorn, R.; Fisahn, J.; Wasternack, C.; Willmitzer, L.; Peña-Cortés, H. Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid-deficient plants by triggering jasmonic acid biosynthesis Plant Physiol. 112, 853-860, (1996)

0
Publications

Peña-Cortés, H.; Prat, S.; Atzorn, R.; Wasternack, C.; Willmitzer, L. Pin2 gene expression in potato and tomato detached leaves from ABA-deficient potato and tomato plants upon systemin treatment Planta 198, 447-451, (1996)

0
Publications

Herde, O.; Peña-Cortés, H.; Wasternack, C.; Willmitzer, L.; Fisahn, J. Electric signaling and PIN2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous ABA in several ABA-deficient tomato mutants Plant Physiol. 119, 213-218, (1999)

0
Publications

Poeschl, Y.; Delker, C.; Trenner, J.; Ullrich, K.; Quint, M. & Grosse, I. Optimized probe masking for comparative transcriptomics of closely related species.<!--[if gte mso 9]><![endif]--><!--[if gte mso 9]><xml> Normal 0 21 false false false DE X-NONE X-NONE</xml><![endif]--><!--[if gte mso 9]><![endif]--><!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Normale Tabelle"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-fareast-language:EN-US;}</style> <![endif]--> PLOS ONE 8, e78497, (2013) DOI: 10.1371/journal.pone.0078497

Microarrays are commonly applied to study the transcriptome of specific species. However, many available microarrays arerestricted to model organisms, and the design of custom microarrays for other species is often not feasible. Hence,transcriptomics approaches of non-model organisms as well as comparative transcriptomics studies among two or morespecies often make use of cost-intensive RNAseq studies or, alternatively, by hybridizing transcripts of a query species to amicroarray of a closely related species. When analyzing these cross-species microarray expression data, differences in thetranscriptome of the query species can cause problems, such as the following: (i) lower hybridization accuracy of probes dueto mismatches or deletions, (ii) probes binding multiple transcripts of different genes, and (iii) probes binding transcripts ofnon-orthologous genes. So far, methods for (i) exist, but these neglect (ii) and (iii). Here, we propose an approach forcomparative transcriptomics addressing problems (i) to (iii), which retains only transcript-specific probes binding transcriptsof orthologous genes. We apply this approach to an Arabidopsis lyrata expression data set measured on a microarraydesigned for Arabidopsis thaliana, and compare it to two alternative approaches, a sequence-based approach and a genomicDNA hybridization-based approach. We investigate the number of retained probe sets, and we validate the resultingexpression responses by qRT-PCR. We find that the proposed approach combines the benefit of sequence-based stringencyand accuracy while allowing the expression analysis of much more genes than the alternative sequence-based approach. Asan added benefit, the proposed approach requires probes to detect transcripts of orthologous genes only, which provides asuperior base for biological interpretation of the measured expression responses.
Publications

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C. Auxin-induced expression divergence between Arabidopsis species likely originates within the TIR1/AFB-AUX/IAA-ARF module BioRxiv (2016) DOI: 10.1101/038422

Auxin is an essential regulator of plant growth and development and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intra-species comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of inter-species differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Publications

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BioRxiv (2017) DOI: 10.1101/017285

Background: Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Results: Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Conclusion: Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Publications

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C. Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB–AUX/IAA–ARF module J Exp Bot 68, 539-552, (2017) DOI: 10.1093/jxb/erw457

Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Publications

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Publications

Mitra, D.; Kumari, P.; Quegwer, J.; Klemm, S.; Moeller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K. Microtubule-associated protein IQ67 DOMAIN5 regulates interdigitation of leaf pavement cells in Arabidopsis thaliana bioRxiv (2018) DOI: 10.1101/268466

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis, as indicated by reduced interdigitation of neighboring cells in the leaf epidermis of iqd5 mutants. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced asymmetric expansion. Lastly, we provide evidence for IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate multi-polar growth in PCs.
IPB Mainnav Search