jump to searchjump to navigationjump to content

Publications - Molecular Signal Processing

Sort by: sort ascending Year Type of publication

Displaying results 1 to 10 of 13.

Publications

Chen, D.L.; Delatorre,.C.A.; Bakker, A.; Abel, S. Conditional identification of phosphate starvation-response mutants in <span style="font-style: italic;">Arabidopsis thaliana</span> Planta 211, 13 - 22, (2000)

0
Publications

Colon-Carmona, A.; Chen, D.L.; Yeh, K.C.; Abel, S. Aux/IAA proteins are phosphorylated by phytochrome in vitro Plant Physiology 124, 1728-1738, (2000)

Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived transcription factors that are induced as a primary response to the plant growth hormone IAA or auxin. Gain-of-function mutations in Arabidopsis genes,SHY2/IAA3, AXR3/IAA17, andAXR2/IAA7 cause pleiotropic phenotypes consistent with enhanced auxin responses, possibly by increasing Aux/IAA protein stability. Semidominant mutations shy2-1D,shy2-2, axr3-1, and axr2-1induce ectopic light responses in dark-grown seedlings. Because genetic studies suggest that the shy2-1D andshy2-2 mutations bypass phytochrome requirement for certain aspects of photomorphogenesis, we tested whether SHY2/IAA3 and related Aux/IAA proteins interact directly with phytochrome and whether they are substrates for its protein kinase activity. Here we show that recombinant Aux/IAA proteins from Arabidopsis and pea (Pisum sativum) interact in vitro with recombinant phytochrome A from oat (Avena sativa). We further show that recombinant SHY2/IAA3, AXR3/IAA17, IAA1, IAA9, and Ps-IAA4 are phosphorylated by recombinant oat phytochrome A in vitro. Deletion analysis of Ps-IAA4 indicates that phytochrome A phosphorylation occurs on the N-terminal half of the protein. Metabolic labeling and immunoprecipitation studies with affinity-purified antibodies to IAA3 demonstrate increased in vivo steady-state levels of mutant IAA3 in shy2-2 plants and phosphorylation of the SHY2-2 protein in vivo. Phytochrome-dependent phosphorylation of Aux/IAA proteins is proposed to provide one molecular mechanism for integrating auxin and light signaling in plant development.
Publications

Grubb, C.D.; Gross, H.B.; Chen, D.L.; Abel, S. Identification of <em>Arabidopsis</em> mutants with altered glucosinolate profiles based on isothiocyanate bioactivity Plant Sci 162, 143 - 152, (2002) DOI: 10.1016/S0168-9452(01)00550-7

Glucosinolates are a diverse class of nitrogen- and sulfur-containing secondary metabolites. They are rapidly hydrolyzed on tissue disruption to a number of biologically active compounds that are increasingly attracting interest as anticarcinogenic phytochemicals and crop protectants. Several glucosinolate-derived isothiocyanates are potent chemopreventive agents that favorably modulate carcinogen metabolism in mammals. Methylsulfinylalkyl isothiocyanates, in particular the 4-methylsulfinylbutyl derivative, are selective and potent inducers of mammalian detoxification enzymes such as quinone reductase (QR). Cruciferous plants including Arabidopsis thaliana (L.) Heyhn, synthesize methylsulfinylalkyl glucosinolates, which are derived from methionine. Using a colorimetric assay for QR activity in murine hepatoma cells and high performance liquid chromatography (HPLC) analysis of desulfoglucosinolates, we have demonstrated a strong positive correlation between leaf QR inducer potency and leaf content of methionine-derived glucosinolates in various A. thaliana ecotypes and available glucosinolate mutants. In a molecular genetic approach to glucosinolate biosynthesis, we screened 3000 chemically mutagenized M2 plants of the Columbia ecotype for altered leaf QR inducer potency. Subsequent HPLC analysis of progeny of putative mutants identified six lines with significant and heritable changes in leaf glucosinolate content and composition.
Publications

Poeschl, Y.; Delker, C.; Trenner, J.; Ullrich, K.; Quint, M. & Grosse, I. Optimized Probe Masking for Comparative Transcriptomics of Closely Related Species PLOS ONE 8, e78497, (2013) DOI: 10.1371/journal.pone.0078497

Microarrays are commonly applied to study the transcriptome of specific species. However, many available microarrays arerestricted to model organisms, and the design of custom microarrays for other species is often not feasible. Hence,transcriptomics approaches of non-model organisms as well as comparative transcriptomics studies among two or morespecies often make use of cost-intensive RNAseq studies or, alternatively, by hybridizing transcripts of a query species to amicroarray of a closely related species. When analyzing these cross-species microarray expression data, differences in thetranscriptome of the query species can cause problems, such as the following: (i) lower hybridization accuracy of probes dueto mismatches or deletions, (ii) probes binding multiple transcripts of different genes, and (iii) probes binding transcripts ofnon-orthologous genes. So far, methods for (i) exist, but these neglect (ii) and (iii). Here, we propose an approach forcomparative transcriptomics addressing problems (i) to (iii), which retains only transcript-specific probes binding transcriptsof orthologous genes. We apply this approach to an Arabidopsis lyrata expression data set measured on a microarraydesigned for Arabidopsis thaliana, and compare it to two alternative approaches, a sequence-based approach and a genomicDNA hybridization-based approach. We investigate the number of retained probe sets, and we validate the resultingexpression responses by qRT-PCR. We find that the proposed approach combines the benefit of sequence-based stringencyand accuracy while allowing the expression analysis of much more genes than the alternative sequence-based approach. Asan added benefit, the proposed approach requires probes to detect transcripts of orthologous genes only, which provides asuperior base for biological interpretation of the measured expression responses.
Preprints

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C. Auxin-induced expression divergence between Arabidopsis species likely originates within the TIR1/AFB-AUX/IAA-ARF module bioRxiv (2016) DOI: 10.1101/038422

Auxin is an essential regulator of plant growth and development and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intra-species comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of inter-species differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Publications

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C. Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB–AUX/IAA–ARF module J Exp Bot 68, 539-552, (2017) DOI: 10.1093/jxb/erw457

Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Publications

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana BMC Plant Biol 17, 114, (2017) DOI: 10.1186/s12870-017-1068-5

BackgroundGlobal increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best.ResultsHere, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown under long day conditions in four different temperatures ranging from 16 to 28 °C. We used Q10, GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions.ConclusionGenotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Preprints

Ibañez, C.; Poeschl, Y.; Peterson, T.; Bellstädt, J.; Denk, K.; Gogol-Döring, A.; Quint, M.; Delker, C. Ambient temperature and genotype differentially affect developmental and phenotypic plasticity in Arabidopsis thaliana bioRxiv (2017) DOI: 10.1101/017285

Background: Global increase in ambient temperatures constitute a significant challenge to wild and cultivated plant species. Forward genetic analyses of individual temperature-responsive traits have resulted in the identification of several signaling and response components. However, a comprehensive knowledge about temperature sensitivity of different developmental stages and the contribution of natural variation is still scarce and fragmented at best. Results: Here, we systematically analyze thermomorphogenesis throughout a complete life cycle in ten natural Arabidopsis thaliana accessions grown in four different temperatures ranging from 16 to 28 °C. We used Q 10 , GxE, phenotypic divergence and correlation analyses to assess temperature sensitivity and genotype effects of more than 30 morphometric and developmental traits representing five phenotype classes. We found that genotype and temperature differentially affected plant growth and development with variing strengths. Furthermore, overall correlations among phenotypic temperature responses was relatively low which seems to be caused by differential capacities for temperature adaptations of individual accessions. Conclusion: Genotype-specific temperature responses may be attractive targets for future forward genetic approaches and accession-specific thermomorphogenesis maps may aid the assessment of functional relevance of known and novel regulatory components.
Preprints

Mitra, D.; Kumari, P.; Quegwer, J.; Klemm, S.; Moeller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K. Microtubule-associated protein IQ67 DOMAIN5 regulates interdigitation of leaf pavement cells in Arabidopsis thaliana bioRxiv (2018) DOI: 10.1101/268466

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis, as indicated by reduced interdigitation of neighboring cells in the leaf epidermis of iqd5 mutants. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced asymmetric expansion. Lastly, we provide evidence for IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate multi-polar growth in PCs.
Publications

Bellstaedt, J.; Trenner, J.; Lippmann, R.; Poeschl, Y.; Zhang, X.; Friml, J.; Quint, M.; Delker, C. A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls Plant Physiol 180, 757-766, (2019) DOI: 10.1104/pp.18.01377

Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls, and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by the generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl, where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl.
IPB Mainnav Search