jump to searchjump to navigationjump to content

Publications - Molecular Signal Processing

Sort by: Year Type of publication

Displaying results 1 to 10 of 46.

Printed publications

Ried, M. K.; Wild, R.; Zhu, J.; Broger, L.; Harmel, R. K.; Hothorn, L. A.; Fiedler, D.; Hothorn, M.; Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis bioRxiv (2019) DOI: 10.1101/2019.12.13.875393

Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signalling cascades, enabling them to maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signalling molecules (PP-InsPs), which are sensed by SPX-domain containing proteins. In plants, PP-InsP bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8 – SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors.
Preprints

Niemeyer, M.; Moreno Castillo, E.; Ihling, C. H.; Iacobucci, C.; Wilde, V.; Hellmuth, A.; Hoehenwarter, W.; Samodelov, S. L.; Zurbriggen, M. D.; Kastritis, P. L.; Sinz, A.; Calderón Villalobos, L. I. A.; Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin receptor assemblies bioRxiv (2019) DOI: 10.1101/787770

Cullin RING-type E3 ubiquitin ligases SCFTIR1/AFB1-5 and their ubiquitylation targets, AUX/IAAs, sense auxin concentrations in the nucleus. TIR1 binds a surface-exposed degron in AUX/IAAs promoting their ubiquitylation and rapid auxin-regulated proteasomal degradation. Here, we resolved TIR1·auxin·IAA7 and TIR1·auxin·IAA12 complex topology, and show that flexible intrinsically disordered regions (IDRs) in the degron′s vicinity, cooperatively position AUX/IAAs on TIR1. The AUX/IAA PB1 interaction domain also assists in non-native contacts, affecting AUX/IAA dynamic interaction states. Our results establish a role for IDRs in modulating auxin receptor assemblies. By securing AUX/IAAs on two opposite surfaces of TIR1, IDR diversity supports locally tailored positioning for targeted ubiquitylation and might provide conformational flexibility for adopting a multiplicity of functional states. We postulate IDRs in distinct members of the AUX/IAA family to be an adaptive signature for protein interaction and initiation region for proteasome recruitment.
Publications

Girardin, A.; Wang, T.; Ding, Y.; Keller, J.; Buendia, L.; Gaston, M.; Ribeyre, C.; Gasciolli, V.; Auriac, M.-C.; Vernié, T.; Bendahmane, A.; Ried, M. K.; Parniske, M.; Morel, P.; Vandenbussche, M.; Schorderet, M.; Reinhardt, D.; Delaux, P.-M.; Bono, J.-J.; Lefebvre, B.; LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes Curr. Biol. 29, 4249-4259.e5, (2019) DOI: 10.1016/j.cub.2019.11.038

Bacterial lipo-chitooligosaccharides (LCOs) are key mediators of the nitrogen-fixing root nodule symbiosis (RNS) in legumes. The isolation of LCOs from arbuscular mycorrhizal fungi suggested that LCOs are also signaling molecules in arbuscular mycorrhiza (AM). However, the corresponding plant receptors have remained uncharacterized. Here we show that petunia and tomato mutants in the LysM receptor-like kinases LYK10 are impaired in AM formation. Petunia and tomato LYK10 proteins have a high affinity for LCOs (Kd in the nM range) comparable to that previously reported for a legume LCO receptor essential for the RNS. Interestingly, the tomato and petunia LYK10 promoters, when introduced into a legume, were active in nodules similarly to the promoter of the legume orthologous gene. Moreover, tomato and petunia LYK10 coding sequences restored nodulation in legumes mutated in their orthologs. This combination of genetic and biochemical data clearly pinpoints Solanaceous LYK10 as part of an ancestral LCO perception system involved in AM establishment, which has been directly recruited during evolution of the RNS in legumes.
Publications

Gago-Zachert, S.; Schuck, J.; Weinholdt, C.; Knoblich, M.; Pantaleo, V.; Grosse, I.; Gursinsky, T.; Behrens, S.-E.; Highly efficacious antiviral protection of plants by small interfering RNAs identified in vitro Nucleic Acids Res. 47, 9343-9357, (2019) DOI: 10.1093/nar/gkz678

In response to a viral infection, the plant’s RNA silencing machinery processes viral RNAs into a huge number of small interfering RNAs (siRNAs). However, a very few of these siRNAs actually interfere with viral replication. A reliable approach to identify these immunologically effective siRNAs (esiRNAs) and to define the characteristics underlying their activity has not been available so far. Here, we develop a novel screening approach that enables a rapid functional identification of antiviral esiRNAs. Tests on the efficacy of such identified esiRNAs of a model virus achieved a virtual full protection of plants against a massive subsequent infection in transient applications. We find that the functionality of esiRNAs depends crucially on two properties: the binding affinity to Argonaute proteins and the ability to access the target RNA. The ability to rapidly identify functional esiRNAs could be of great benefit for all RNA silencing-based plant protection measures against viruses and other pathogens.
Publications

Chutia, R.; Abel, S.; Ziegler, J.; Iron and Phosphate Deficiency Regulators Concertedly Control Coumarin Profiles in Arabidopsis thaliana Roots During Iron, Phosphate, and Combined Deficiencies Front. Plant Sci. 10, 113, (2019) DOI: 10.3389/fpls.2019.00113

Plants face varying nutrient conditions, to which they have to adapt to. Adaptive responses are nutrient-specific and strategies to ensure supply and homeostasis for one nutrient might be opposite to another one, as shown for phosphate (Pi) and iron (Fe) deficiency responses, where many genes are regulated in an opposing manner. This was also observed on the metabolite levels. Whereas root and exudate levels of catechol-type coumarins, phenylpropanoid-derived 2-benzopyranones, which facilitate Fe acquisition, are elevated after Fe deficiency, they are decreased after Pi deficiency. Exposing plants to combined Pi and Fe deficiency showed that the generation of coumarin profiles in Arabidopsis thaliana roots by Pi deficiency considerably depends on the availability of Fe. Similarly, the effect of Fe deficiency on coumarin profiles is different at low compared to high Pi availability. These findings suggest a fine-tuning of coumarin profiles, which depends on Fe and Pi availability. T-DNA insertion lines exhibiting aberrant expression of genes involved in the regulation of Pi starvation responses (PHO1, PHR1, bHLH32, PHL1, SPX1) and Fe starvation responses (BRUTUS, PYE, bHLH104, FIT) were used to analyze the regulation of the generation of coumarin profiles in Arabidopsis thaliana roots by Pi, Fe, and combined Pi and Fe deficiency. The analysis revealed a role of several Fe-deficiency response regulators in the regulation of Fe and of Pi deficiency-induced coumarin profiles as well as for Pi deficiency response regulators in the regulation of Pi and of Fe deficiency-induced coumarin profiles. Additionally, the regulation of Fe deficiency-induced coumarin profiles by Fe deficiency response regulators is influenced by Pi availability. Conversely, regulation of Pi deficiency-induced coumarin profiles by Pi deficiency response regulators is modified by Fe availability.
Publications

Bochnia, M.; Sander, J.; Ziegler, J.; Terhardt, M.; Sander, S.; Janzen, N.; Cavalleri, J.-M. V.; Zuraw, A.; Wensch-Dorendorf, M.; Zeyner, A.; Detection of MCPG metabolites in horses with atypical myopathy PLOS ONE 14, e0211698, (2019) DOI: 10.1371/journal.pone.0211698

Atypical myopathy (AM) in horses is caused by ingestion of seeds of the Acer species (Sapindaceae family). Methylenecyclopropylacetyl-CoA (MCPA-CoA), derived from hypoglycin A (HGA), is currently the only active toxin in Acer pseudoplatanus or Acer negundo seeds related to AM outbreaks. However, seeds or arils of various Sapindaceae (e.g., ackee, lychee, mamoncillo, longan fruit) also contain methylenecyclopropylglycine (MCPG), which is a structural analogue of HGA that can cause hypoglycaemic encephalopathy in humans. The active poison formed from MCPG is methylenecyclopropylformyl-CoA (MCPF-CoA). MCPF-CoA and MCPA-CoA strongly inhibit enzymes that participate in β-oxidation and energy production from fat. The aim of our study was to investigate if MCPG is involved in Acer seed poisoning in horses. MCPG, as well as glycine and carnitine conjugates (MCPF-glycine, MCPF-carnitine), were quantified using high-performance liquid chromatography-tandem mass spectrometry of serum and urine from horses that had ingested Acer pseudoplatanus seeds and developed typical AM symptoms. The results were compared to those of healthy control horses. For comparison, HGA and its glycine and carnitine derivatives were also measured. Additionally, to assess the degree of enzyme inhibition of β-oxidation, several acyl glycines and acyl carnitines were included in the analysis. In addition to HGA and the specific toxic metabolites (MCPA-carnitine and MCPA-glycine), MCPG, MCPF-glycine and MCPF-carnitine were detected in the serum and urine of affected horses. Strong inhibition of β-oxidation was demonstrated by elevated concentrations of all acyl glycines and carnitines, but the highest correlations were observed between MCPF-carnitine and isobutyryl-carnitine (r = 0.93) as well as between MCPA- (and MCPF-) glycine and valeryl-glycine with r = 0.96 (and r = 0.87). As shown here, for biochemical analysis of atypical myopathy of horses, it is necessary to take MCPG and the corresponding metabolites into consideration.
Publications

Naumann, C.; Müller, J.; Sakhonwasee, S.; Wieghaus, A.; Hause, G.; Heisters, M.; Bürstenbinder, K.; Abel, S.; The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy Plant Physiol. 179, 460-476, (2019) DOI: 10.1104/pp.18.01379

Inorganic phosphate (Pi) is often a limiting plant nutrient. In members of the Brassicaceae family, such as Arabidopsis (Arabidopsis thaliana), Pi deprivation reshapes root system architecture to favor topsoil foraging. It does so by inhibiting primary root extension and stimulating lateral root formation. Root growth inhibition from phosphate (Pi) deficiency is triggered by iron-stimulated, apoplastic reactive oxygen species generation and cell wall modifications, which impair cell-to-cell communication and meristem maintenance. These processes require LOW PHOSPHATE RESPONSE1 (LPR1), a cell wall-targeted ferroxidase, and PHOSPHATE DEFICIENCY RESPONSE2 (PDR2), the single endoplasmic reticulum (ER)-resident P5-type ATPase (AtP5A), which is thought to control LPR1 secretion or activity. Autophagy is a conserved process involving the vacuolar degradation of cellular components. While the function of autophagy is well established under nutrient starvation (C, N, or S), it remains to be explored under Pi deprivation. Because AtP5A/PDR2 likely functions in the ER stress response, we analyzed the effect of Pi limitation on autophagy. Our comparative study of mutants defective in the local Pi deficiency response, ER stress response, and autophagy demonstrated that ER stress-dependent autophagy is rapidly activated as part of the developmental root response to Pi limitation and requires the genetic PDR2-LPR1 module. We conclude that Pi-dependent activation of autophagy in the root apex is a consequence of local Pi sensing and the associated ER stress response, rather than a means for systemic recycling of the macronutrient.
Publications

Mitra, D.; Klemm, S.; Kumari, P.; Quegwer, J.; Möller, B.; Poeschl, Y.; Pflug, P.; Stamm, G.; Abel, S.; Bürstenbinder, K.; Microtubule-associated protein IQ67 DOMAIN5 regulates morphogenesis of leaf pavement cells in Arabidopsis thaliana J. Exp. Bot. 70, 529-543, (2019) DOI: 10.1093/jxb/ery395

Plant microtubules form a highly dynamic intracellular network with important roles for regulating cell division, cell proliferation and cell morphology. Its organization and dynamics are coordinated by various microtubule-associated proteins (MAPs) that integrate environmental and developmental stimuli to fine-tune and adjust cytoskeletal arrays. IQ67 DOMAIN (IQD) proteins recently emerged as a class of plant-specific MAPs with largely unknown functions. Here, using a reverse genetics approach, we characterize Arabidopsis IQD5 in terms of its expression domains, subcellular localization and biological functions. We show that IQD5 is expressed mostly in vegetative tissues, where it localizes to cortical microtubule arrays. Our phenotypic analysis of iqd5 loss-of-function lines reveals functions of IQD5 in pavement cell (PC) shape morphogenesis. Histochemical analysis of cell wall composition further suggests reduced rates of cellulose deposition in anticlinal cell walls, which correlate with reduced anisotropic expansion. Lastly, we demonstrate IQD5-dependent recruitment of calmodulin calcium sensors to cortical microtubule arrays and provide first evidence for important roles of calcium in regulation of PC morphogenesis. Our work thus identifies IQD5 as a novel player in PC shape regulation, and, for the first time, links calcium signaling to developmental processes that regulate anisotropic growth in PCs.
Publications

Mielke, S.; Gasperini, D.; Interplay between Plant Cell Walls and Jasmonate Production Plant Cell Physiol. 60, 2629-2637, (2019) DOI: 10.1093/pcp/pcz119

Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Publications

Kölling, M.; Kumari, P.; Bürstenbinder, K.; Calcium- and calmodulin-regulated microtubule-associated proteins as signal-integration hubs at the plasma membrane–cytoskeleton nexus J. Exp. Bot. 70, 387-396, (2019) DOI: 10.1093/jxb/ery397

Plant growth and development are a genetically predetermined series of events but can change dramatically in response to environmental stimuli, involving perpetual pattern formation and reprogramming of development. The rate of growth is determined by cell division and subsequent cell expansion, which are restricted and controlled by the cell wall–plasma membrane–cytoskeleton continuum, and are coordinated by intricate networks that facilitate intra- and intercellular communication. An essential role in cellular signaling is played by calcium ions, which act as universal second messengers that transduce, integrate, and multiply incoming signals during numerous plant growth processes, in part by regulation of the microtubule cytoskeleton. In this review, we highlight recent advances in the understanding of calcium-mediated regulation of microtubule-associated proteins, their function at the microtubule cytoskeleton, and their potential role as hubs in crosstalk with other signaling pathways.
IPB Mainnav Search