jump to searchjump to navigationjump to content

Publications - Molecular Signal Processing

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Ibañez, C.; Delker, C.; Martinez, C.; Bürstenbinder, K.; Janitza, P.; Lippmann, R.; Ludwig, W.; Sun, H.; James, G. V.; Klecker, M.; Grossjohann, A.; Schneeberger, K.; Prat, S.; Quint, M. Brassinosteroids Dominate Hormonal Regulation of Plant Thermomorphogenesis via BZR1 Curr Biol 28, 303-310.e3, (2018) DOI: 10.1016/j.cub.2017.11.077

Thermomorphogenesis is defined as the suite of morphological changes that together are likely to contribute to adaptive growth acclimation to usually elevated ambient temperature [ 1, 2 ]. While many details of warmth-induced signal transduction are still elusive, parallels to light signaling recently became obvious (reviewed in [ 3 ]). It involves photoreceptors that can also sense changes in ambient temperature [ 3–5 ] and act, for example, by repressing protein activity of the central integrator of temperature information PHYTOCHROME-INTERACTING FACTOR 4 (PIF4 [ 6 ]). In addition, PIF4 transcript accumulation is tightly controlled by the evening complex member EARLY FLOWERING 3 [ 7, 8 ]. According to the current understanding, PIF4 activates growth-promoting genes directly but also via inducing auxin biosynthesis and signaling, resulting in cell elongation. Based on a mutagenesis screen in the model plant Arabidopsis thaliana for mutants with defects in temperature-induced hypocotyl elongation, we show here that both PIF4 and auxin function depend on brassinosteroids. Genetic and pharmacological analyses place brassinosteroids downstream of PIF4 and auxin. We found that brassinosteroids act via the transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), which accumulates in the nucleus at high temperature, where it induces expression of growth-promoting genes. Furthermore, we show that at elevated temperature BZR1 binds to the promoter of PIF4, inducing its expression. These findings suggest that BZR1 functions in an amplifying feedforward loop involved in PIF4 activation. Although numerous negative regulators of PIF4 have been described, we identify BZR1 here as a true temperature-dependent positive regulator of PIF4, acting as a major growth coordinator.
Publications

Zayneb, C.; Lamia, K.; Olfa, E.; Naïma, J.; Grubb, C. D.; Bassem, K.; Hafedh, M.; Amine, E. Morphological, Physiological and Biochemical Impact of Ink Industry Effluent on Germination of Maize (Zea mays), Barley (Hordeum vulgare) and Sorghum (Sorghum bicolor) Bull Environ Contam Toxicol 95, 687-693, (2015) DOI: 10.1007/s00128-015-1600-y

The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water.
IPB Mainnav Search